next up previous
Next: hpq-0017 Up: Digital Formula Book for Previous: hpq-0015


hpq-0016

Edited by Hiromasa Nakayama

$
{\tt hypergeo0.hypergeometric_pFq}
({\tt List}(a,b,(-n)),{\tt List}((( 1 +a)...
...er}
(\frac{a}{ 2 },n))\cdot
{\tt hypergeo0.pochhammer}
(((- 2 )\cdot b),n))} $
Typeset by om2tex.xsl

$
{\tt hypergeo0HypergeometricPFq}
(\{ a,b,-n\} ,\{ 1 + a - b,3 b - n\} ,1) =...
...ac{a}{2}},n) 
{\tt Pochhammer}
(1 + a - b,n) 
{\tt Pochhammer}
(-2 b,n)}} $
Typeset by Mathematica

Formula in the tfb format:

    hypergeo0.hypergeometric_pFq(
     list1.list(a, b, arith1.unary_minus(n)),
     list1.list(1 + a - b, 1 + 2 * b - n),
     1)
    = 
    ((hypergeo0.pochhammer(a - 2 * b, n) 
      * hypergeo0.pochhammer(1 + (a / 2) - b, n)
      * hypergeo0.pochhammer(arith1.unary_minus(b), n))
     /
     (hypergeo0.pochhammer(1 + a - b, n)
      * hypergeo0.pochhammer(a / 2, n)
      * hypergeo0.pochhammer(arith1.unary_minus(2) * b, n)));

Summation theorems for ordinary hypergeometric series

Reference: Retrieve the formula in Mathematica form hpq-0016-math-auto.m Retrieve the formula in Risa/Asir form hpq-0016-asir-auto.rr Retrieve the formula in LaTeX form hpq-0016-tex-auto.tex Interactive replacement hpq-0016-js-auto.html


Nobuki Takayama 2003-02-03