next up previous
Next: hpq-0005 Up: Digital Formula Book for Previous: hpq-0003


Edited by Hiromasa Nakayama

$  {}_2F_1(a,(-n),c, 1 )=\frac{
{\tt hypergeo0.pochhammer}
{\tt hypergeo0.pochhammer}
(c,n)} $
Typeset by om2tex.xsl

$ {\frac{\Gamma (c) \Gamma (-a + c + n)}{\Gamma (-a + c) \Gamma (c + n)}} = {\frac{
{\tt Pochhammer}
(-a + c,n)}{
{\tt Pochhammer}
(c,n)}} $
Typeset by Mathematica

Formula in the tfb format:

    hypergeo1.hypergeometric2F1(a, arith1.unary_minus(n), c, 1)
    ((hypergeo0.pochhammer(c - a, n) / hypergeo0.pochhammer(c, n));

Summation theorems for ordinary hypergeometric series

Reference: Retrieve the formula in Mathematica form hpq-0004-math-auto.m Retrieve the formula in Risa/Asir form hpq-0004-asir-auto.rr Retrieve the formula in LaTeX form hpq-0004-tex-auto.tex Interactive replacement hpq-0004-js-auto.html

Nobuki Takayama 2003-02-03