Next: h43-0300 Up: Digital Formula Book for Previous: h32-0001

# h32-0300

Connection formula of solutions between 0 and infty.

Typeset by om2tex.xsl

Typeset by Mathematica

Formula in the tfb format:

```logic1.implies(((((set1.notin(a1 - a2, set1.map(OMLBIND(OMBVAR(x),
logic1.and(set1.in(x, setname1.Z), relation1.leq(x, 0)))))) ~logic1.and~
(set1.notin(a1 - a3, set1.map(OMLBIND(OMBVAR(x), logic1.and(set1.in(x,
setname1.Z), relation1.leq(x, 0))))))) ~logic1.and~ (set1.notin(a2 - a3,
set1.map(OMLBIND(OMBVAR(x), logic1.and(set1.in(x, setname1.Z), relation1.leq(x,
0))))))) ~logic1.and~ (set1.notin(b1, set1.map(OMLBIND(OMBVAR(x),
logic1.and(set1.in(x, setname1.Z), relation1.leq(x, 0))))))) ~logic1.and~
(set1.notin(b2, set1.map(OMLBIND(OMBVAR(x), logic1.and(set1.in(x, setname1.Z),
relation1.leq(x, 0)))))), (hypergeo1.hypergeometric_pFq(list1.list(a1, a2, a3),
list1.list(b1, b2), z)) ~relation1.eq~
(((((arith1.divide(((((hypergeo0.gamma(b1) * hypergeo0.gamma(b2)) *
hypergeo0.gamma(a2 - a1)) * hypergeo0.gamma(a3 - a1)))  ,
((((hypergeo0.gamma(b1 - a1) * hypergeo0.gamma(b2 - a1)) * hypergeo0.gamma(a2))
* hypergeo0.gamma(a3))) ) )  * hypergeo1.hypergeometric_pFq(list1.list(a1, (a1
- b1)  + 1, (a1 - b2)  + 1), list1.list((a1 - a2)  + 1, (a1 - a3)  + 1),
arith1.divide(1 , z) )) * (arith1.power((arith1.unary_minus(z))  ,
(arith1.unary_minus((a1) )) ) ) ) + (((arith1.divide(((((hypergeo0.gamma(b1) *
hypergeo0.gamma(b2)) * hypergeo0.gamma(a1 - a2)) * hypergeo0.gamma(a3 - a2)))
, ((((hypergeo0.gamma(b1 - a2) * hypergeo0.gamma(b2 - a2)) *
hypergeo0.gamma(a1)) * hypergeo0.gamma(a3))) ) )  *
hypergeo1.hypergeometric_pFq(list1.list(a2, (a2 - b1)  + 1, (a2 - b2)  + 1),
list1.list((a2 - a1)  + 1, (a2 - a3)  + 1), arith1.divide(1 , z) )) *
(arith1.power((arith1.unary_minus(z))  , (arith1.unary_minus((a2) )) ) ) ) +
(((arith1.divide(((((hypergeo0.gamma(b1) * hypergeo0.gamma(b2)) *
hypergeo0.gamma(a1 - a3)) * hypergeo0.gamma(a2 - a3)))  ,
((((hypergeo0.gamma(b1 - a3) * hypergeo0.gamma(b2 - a3)) * hypergeo0.gamma(a1))
* hypergeo0.gamma(a2))) ) )  * hypergeo1.hypergeometric_pFq(list1.list(a3, (a3
- b1)  + 1, (a3 - b2)  + 1), list1.list((a3 - a1)  + 1, (a3 - a2)  + 1),
arith1.divide(1 , z) )) * (arith1.power((arith1.unary_minus(z))  , (arith1.unary
_minus((a3) )) ) ) )) ));
```

Connection formula of 3F2 between 0 and infty for generaic values of parameters.

Reference: [0]

Nobuki Takayama 2003-02-03