next up previous
Next: h21-0206 Up: Digital Formula Book for Previous: h21-0204


h21-0205

Edited by Hiromasa Nakayama

$  {}_2F_1(( 4 \cdot a),(( 2 \cdot a)+\frac{ 1 }{ 4 }),(( 4 \cdot a)+\frac{ 1 }...
...frac{ 3 }{ 4 }),\frac{(( 16 \cdot (x)^{ 2 })\cdot ( 1 -x))}{(( 2 -x))^{ 4 }})) $
Typeset by om2tex.xsl

$ {}_2 F_1 (4 a,{\frac{1}{4}} + 2 a,{\frac{1}{2}} + 4 a,x) = {\frac{{}_2 F_1 ...
...{{\left( 2 - x \right) }^4}}})}{{{\left( 1 - {\frac{x}{2}} \right) }^{4 a}}}} $
Typeset by Mathematica

Formula in the tfb format:

    hypergeo1.hypergeometric2F1(4 ~arith1.times~ a,
      2 ~arith1.times~ a ~arith1.plus~ (1 ~arith1.divide~ 4),
      4 ~arith1.times~ a ~arith1.plus~ (1 ~arith1.divide~ 2), x)
    ~relation1.eq~
    (arith1.power(1 ~arith1.minus~ (x ~arith1.divide~ 2), arith1.unary_minus(4)
      ~arith1.times~ a) ~arith1.times~
      hypergeo1.hypergeometric2F1(a, a ~arith1.plus~ (1 ~arith1.divide~ 4),
        2 ~arith1.times~ a ~arith1.plus~ (3 ~arith1.divide~ 4),
	(16 ~arith1.times~ arith1.power(x, 2) ~arith1.times~ 
	(1 ~arith1.minus~ x)) ~arith1.divide~ 
	arith1.power(2 ~arith1.minus~ x, 4)));

quadratic transformation of independent variable

Reference: Retrieve the formula in Mathematica form h21-0205-math-auto.m Retrieve the formula in Risa/Asir form h21-0205-asir-auto.rr Retrieve the formula in LaTeX form h21-0205-tex-auto.tex Interactive replacement h21-0205-js-auto.html


Nobuki Takayama 2003-02-03