next up previous
Next: h21-0202 Up: Digital Formula Book for Previous: h21-0200


h21-0201

Edited by Hiromasa Nakayama

$  {}_2F_1(( 4 \cdot a),(( 2 \cdot a)+\frac{ 1 }{ 4 }),(( 2 \cdot a)+\frac{ 3 }...
... 16 )\cdot x)\cdot (( 1 -x))^{ 2 })}{((( 1 -( 6 \cdot x))+(x)^{ 2 }))^{ 2 }})) $
Typeset by om2tex.xsl

$ {}_2 F_1 (4 a,{\frac{1}{4}} + 2 a,{\frac{3}{4}} + 2 a,x) = {\frac{{}_2 F_1 ...
... - 6 x + {x^2} \right) }^2}}})}{{{\left( 1 - 6 x + {x^2} \right) }^{2 a}}}} $
Typeset by Mathematica

Formula in the tfb format:

    hypergeo1.hypergeometric2F1(4 ~arith1.times~ a,
      2 ~arith1.times~ a ~arith1.plus~ (1 ~arith1.divide~ 4),
      2 ~arith1.times~ a ~arith1.plus~ (3 ~arith1.divide~ 4), x)
    ~relation1.eq~
    (arith1.power(arith1.power(x, 2) ~arith1.minus~ (6 ~arith1.times~ x)
      ~arith1.plus~ 1, arith1.unary_minus(2) ~arith1.times~ a)
      ~arith1.times~
      hypergeo1.hypergeometric2F1(a, a ~arith1.plus~ (1 ~arith1.divide~ 2),
        2 ~arith1.times~ a ~arith1.plus~ (3 ~arith1.divide~ 4), 
	(arith1.unary_minus(16) ~arith1.times~ x ~arith1.times~
        arith1.power(1 ~arith1.minus~ x, 2)) ~arith1.divide~
        arith1.power(1 ~arith1.minus~ (6 ~arith1.times~ x) ~arith1.plus~
        arith1.power(x, 2), 2)));

quadratic transformation of independent variable

Reference: Retrieve the formula in Mathematica form h21-0201-math-auto.m Retrieve the formula in Risa/Asir form h21-0201-asir-auto.rr Retrieve the formula in LaTeX form h21-0201-tex-auto.tex Interactive replacement h21-0201-js-auto.html


Nobuki Takayama 2003-02-03