next up previous
Next: h21-0036 Up: Digital Formula Book for Previous: h21-0034


h21-0035

A relation at x=0 of Kummer's 24 solutions

$ ((x)^{( 1 -c)}\cdot  {}_2F_1(((a-c)+ 1 ),((b-c)+ 1 ),( 2 -c),x))=(((x)^{( 1 -...
...))^{(c-b- 1 )})\cdot  {}_2F_1(( 1 -a),((b+ 1 )-c),( 2 -c),\frac{x}{(x- 1 )})) $
Typeset by om2tex.xsl

$ {x^{1 - c}} {}_2 F_1 (1 + a - c,1 + b - c,2 - c,x) = {{\left( 1 - x \right) }^{-1 - b + c}} {x^{1 - c}} {}_2 F_1 (1 - a,1 + b - c,2 - c,{\frac{x}{-1 + x}}) $
Typeset by Mathematica

Formula in the tfb format:

    x ~arith1.power~ (1 ~arith1.minus~ c) ~arith1.times~
    hypergeo1.hypergeometric2F1(a ~arith1.minus~ c ~arith1.plus~ 1,
      b ~arith1.minus~ c ~arith1.plus~ 1, 2 ~arith1.minus~ c,x) ~relation1.eq~
    ( x ~arith1.power~ (1 ~arith1.minus~ c) ~arith1.times~
      ((1 ~arith1.minus~ x) ~arith1.power~ (c ~arith1.minus~ b ~arith1.minus~ 
1)) ~arith1.times~
      hypergeo1.hypergeometric2F1(1 ~arith1.minus~ a,
        b ~arith1.plus~ 1 ~arith1.minus~ c, 2 ~arith1.minus~ c,
            x ~arith1.divide~ (x ~arith1.minus~ 1)));

A relation at x=0 of Kummer's 24 solutions

Reference: [3, 38-39]

Reference: [4, 64-65] Retrieve the formula in Mathematica form h21-0035-math-auto.m Retrieve the formula in Risa/Asir form h21-0035-asir-auto.rr Retrieve the formula in LaTeX form h21-0035-tex-auto.tex Interactive replacement h21-0035-js-auto.html


Nobuki Takayama 2003-02-03