.. _section-linalg: Linear Algebra ============== Sage provides standard constructions from linear algebra, e.g., the characteristic polynomial, echelon form, trace, decomposition, etc., of a matrix. Creation of matrices and matrix multiplication is easy and natural: :: sage: A = Matrix([[1,2,3],[3,2,1],[1,1,1]]) sage: w = vector([1,1,-4]) sage: w*A (0, 0, 0) sage: A*w (-9, 1, -2) sage: kernel(A) Free module of degree 3 and rank 1 over Integer Ring Echelon basis matrix: [ 1 1 -4] Note that in Sage, the kernel of a matrix :math:`A` is the "left kernel", i.e. the space of vectors :math:`w` such that :math:`wA=0`. Solving matrix equations is easy, using the method ``solve_right``. Evaluating ``A.solve_right(Y)`` returns a matrix (or vector) :math:`X` so that :math:`AX=Y`: .. link :: sage: Y = vector([0, -4, -1]) sage: X = A.solve_right(Y) sage: X (-2, 1, 0) sage: A * X # checking our answer... (0, -4, -1) A backslash ``\`` can be used in the place of ``solve_right``; use ``A \ Y`` instead of ``A.solve_right(Y)``. .. link :: sage: A \ Y (-2, 1, 0) If there is no solution, Sage returns an error: .. skip :: sage: A.solve_right(w) Traceback (most recent call last): ... ValueError: matrix equation has no solutions Similarly, use ``A.solve_left(Y)`` to solve for :math:`X` in :math:`XA=Y`. Sage can also compute eigenvalues and eigenvectors:: sage: A = matrix([[0, 4], [-1, 0]]) sage: A.eigenvalues () [-2*I, 2*I] sage: B = matrix([[1, 3], [3, 1]]) sage: B.eigenvectors_left() [(4, [ (1, 1) ], 1), (-2, [ (1, -1) ], 1)] (The syntax for the output of ``eigenvectors_left`` is a list of triples: (eigenvalue, eigenvector, multiplicity).) Eigenvalues and eigenvectors over ``QQ`` or ``RR`` can also be computed using Maxima (see :ref:`section-maxima` below). As noted in :ref:`section-rings`, the ring over which a matrix is defined affects some of its properties. In the following, the first argument to the ``matrix`` command tells Sage to view the matrix as a matrix of integers (the ``ZZ`` case), a matrix of rational numbers (``QQ``), or a matrix of reals (``RR``):: sage: AZ = matrix(ZZ, [[2,0], [0,1]]) sage: AQ = matrix(QQ, [[2,0], [0,1]]) sage: AR = matrix(RR, [[2,0], [0,1]]) sage: AZ.echelon_form() [2 0] [0 1] sage: AQ.echelon_form() [1 0] [0 1] sage: AR.echelon_form() [ 1.00000000000000 0.000000000000000] [0.000000000000000 1.00000000000000] Matrix spaces ------------- We create the space :math:`\text{Mat}_{3\times 3}(\QQ)` of `3 \times 3` matrices with rational entries:: sage: M = MatrixSpace(QQ,3) sage: M Full MatrixSpace of 3 by 3 dense matrices over Rational Field (To specify the space of 3 by 4 matrices, you would use ``MatrixSpace(QQ,3,4)``. If the number of columns is omitted, it defaults to the number of rows, so ``MatrixSpace(QQ,3)`` is a synonym for ``MatrixSpace(QQ,3,3)``.) The space of matrices has a basis which Sage stores as a list: .. link :: sage: B = M.basis() sage: len(B) 9 sage: B[1] [0 1 0] [0 0 0] [0 0 0] We create a matrix as an element of ``M``. .. link :: sage: A = M(range(9)); A [0 1 2] [3 4 5] [6 7 8] Next we compute its reduced row echelon form and kernel. .. link :: sage: A.echelon_form() [ 1 0 -1] [ 0 1 2] [ 0 0 0] sage: A.kernel() Vector space of degree 3 and dimension 1 over Rational Field Basis matrix: [ 1 -2 1] Next we illustrate computation of matrices defined over finite fields: :: sage: M = MatrixSpace(GF(2),4,8) sage: A = M([1,1,0,0, 1,1,1,1, 0,1,0,0, 1,0,1,1, ... 0,0,1,0, 1,1,0,1, 0,0,1,1, 1,1,1,0]) sage: A [1 1 0 0 1 1 1 1] [0 1 0 0 1 0 1 1] [0 0 1 0 1 1 0 1] [0 0 1 1 1 1 1 0] sage: rows = A.rows() sage: A.columns() [(1, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1), (1, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)] sage: rows [(1, 1, 0, 0, 1, 1, 1, 1), (0, 1, 0, 0, 1, 0, 1, 1), (0, 0, 1, 0, 1, 1, 0, 1), (0, 0, 1, 1, 1, 1, 1, 0)] We make the subspace over `\GF{2}` spanned by the above rows. .. link :: sage: V = VectorSpace(GF(2),8) sage: S = V.subspace(rows) sage: S Vector space of degree 8 and dimension 4 over Finite Field of size 2 Basis matrix: [1 0 0 0 0 1 0 0] [0 1 0 0 1 0 1 1] [0 0 1 0 1 1 0 1] [0 0 0 1 0 0 1 1] sage: A.echelon_form() [1 0 0 0 0 1 0 0] [0 1 0 0 1 0 1 1] [0 0 1 0 1 1 0 1] [0 0 0 1 0 0 1 1] The basis of `S` used by Sage is obtained from the non-zero rows of the reduced row echelon form of the matrix of generators of `S`. Sparse Linear Algebra --------------------- Sage has support for sparse linear algebra over PIDs. :: sage: M = MatrixSpace(QQ, 100, sparse=True) sage: A = M.random_element(density = 0.05) sage: E = A.echelon_form() The multi-modular algorithm in Sage is good for square matrices (but not so good for non-square matrices): :: sage: M = MatrixSpace(QQ, 50, 100, sparse=True) sage: A = M.random_element(density = 0.05) sage: E = A.echelon_form() sage: M = MatrixSpace(GF(2), 20, 40, sparse=True) sage: A = M.random_element() sage: E = A.echelon_form() Note that Python is case sensitive: :: sage: M = MatrixSpace(QQ, 10,10, Sparse=True) Traceback (most recent call last): ... TypeError: MatrixSpace() got an unexpected keyword argument 'Sparse'