============== A Tour of Sage ============== This is a tour of Sage that closely follows the tour of Mathematica that is at the beginning of the Mathematica Book. Sage as a Calculator ==================== The Sage command line has a ``sage:`` prompt; you do not have to add it. If you use the Sage notebook, then put everything after the ``sage:`` prompt in an input cell, and press shift-enter to compute the corresponding output. :: sage: 3 + 5 8 The caret symbol means "raise to a power". :: sage: 57.1 ^ 100 4.60904368661396e175 We compute the inverse of a :math:`2 \times 2` matrix in Sage. :: sage: matrix([[1,2], [3,4]])^(-1) [ -2 1] [ 3/2 -1/2] Here we integrate a simple function. :: sage: x = var('x') # create a symbolic variable sage: integrate(sqrt(x)*sqrt(1+x), x) 1/4*((x + 1)^(3/2)/x^(3/2) + sqrt(x + 1)/sqrt(x))/((x + 1)^2/x^2 - 2*(x + 1)/x + 1) + 1/8*log(sqrt(x + 1)/sqrt(x) - 1) - 1/8*log(sqrt(x + 1)/sqrt(x) + 1) This asks Sage to solve a quadratic equation. The symbol ``==`` represents equality in Sage. :: sage: a = var('a') sage: S = solve(x^2 + x == a, x); S [x == -1/2*sqrt(4*a + 1) - 1/2, x == 1/2*sqrt(4*a + 1) - 1/2] The result is a list of equalities. .. link :: sage: S[0].rhs() -1/2*sqrt(4*a + 1) - 1/2 sage: show(plot(sin(x) + sin(1.6*x), 0, 40)) .. image:: sin_plot.* Power Computing with Sage ========================= First we create a :math:`500 \times 500` matrix of random numbers. :: sage: m = random_matrix(RDF,500) It takes Sage a few seconds to compute the eigenvalues of the matrix and plot them. .. link :: sage: e = m.eigenvalues() #about 2 seconds sage: w = [(i, abs(e[i])) for i in range(len(e))] sage: show(points(w)) .. image:: eigen_plot.* Thanks to the GNU Multiprecision Library (GMP), Sage can handle very large numbers, even numbers with millions or billions of digits. :: sage: factorial(100) 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000 sage: n = factorial(1000000) #about 2.5 seconds This computes at least 100 digits of :math:`\pi`. :: sage: N(pi, digits=100) 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068 This asks Sage to factor a polynomial in two variables. :: sage: R. = QQ[] sage: F = factor(x^99 + y^99) sage: F (x + y) * (x^2 - x*y + y^2) * (x^6 - x^3*y^3 + y^6) * (x^10 - x^9*y + x^8*y^2 - x^7*y^3 + x^6*y^4 - x^5*y^5 + x^4*y^6 - x^3*y^7 + x^2*y^8 - x*y^9 + y^10) * (x^20 + x^19*y - x^17*y^3 - x^16*y^4 + x^14*y^6 + x^13*y^7 - x^11*y^9 - x^10*y^10 - x^9*y^11 + x^7*y^13 + x^6*y^14 - x^4*y^16 - x^3*y^17 + x*y^19 + y^20) * (x^60 + x^57*y^3 - x^51*y^9 - x^48*y^12 + x^42*y^18 + x^39*y^21 - x^33*y^27 - x^30*y^30 - x^27*y^33 + x^21*y^39 + x^18*y^42 - x^12*y^48 - x^9*y^51 + x^3*y^57 + y^60) sage: F.expand() x^99 + y^99 Sage takes just under 5 seconds to compute the numbers of ways to partition one hundred million as a sum of positive integers. :: sage: z = Partitions(10^8).cardinality() #about 4.5 seconds sage: str(z)[:40] '1760517045946249141360373894679135204009' Accessing Algorithms in Sage ============================ Whenever you use Sage you are accessing one of the world's largest collections of open source computational algorithms.