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Filter Diagonalization Method

• We solve symmetric definite generalized matrix eigen-
problem:

Av = λB v.

• Only those eigenpairs are required whose eigenvalues
are in I = [α, β].

• Let SI be an invariant subspace spanned by eigenvec-
tors whose eigenvalues are in I.

• Filter F is a well designed linear operator which maps
any input vector to an output vector relatively very
close to SI.
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• When sufficiently many B-orthonormal vectors are fil-
tered, output vectors will span SI approximately.

• SVD analysis with B-metric is applied to the output
vectors, and those singular vectors are rejected whose
singular values are relatively smaller than a certain
tiny threshold.

• The subspace method is applied to the set of remained
B-orthonormal singular vectors, and approximated eigen-
pairs are obtained whose eigenvalues are in the neigh-
bor of I.

• The approximations of eigenpairs are quickly improved
by a few cycles of Rayleigh inverse-iteration or Ritz
simultaneous inverse-iteration.
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Filter Operator by a Combination of Resolvents

• Let R(τ ) ≡ (A − τB)−1B be the generalized resolvent.

• Filter operator is a linear combination of 2n resolvents
R(τp) and an identity operator:

F ≡ c∞I +
2n
∑

p=1
γp R(τp).

The tuning parameters are the integer n and the com-
plex numbers γp, τp, p=1, 2, . . ., 2n, and c∞.

• For an eigenpair (λ(ν),v(ν)), since R(τ )v(ν) = v(ν)· 1
λ(ν)−τ

,

we have F v(ν) = v(ν)·f (λ(ν)), where f (λ) ≡ c∞+
2n
∑

p=1

γp

λ − τp
.

For any eigenvector whose eigenvalue is λ, the rational
function f (λ) gives the output/input ratio of the filter.
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Use of Complex Conjugate Symmetry

For the typical filters, the poles of f (λ) are imaginary n
complex conjugate pairs. For the pair of complex conju-
gate poles, their coefficients are also complex conjugates.

Therefore, a real vector v can be filtered using only n
resolvents whose shifts have positive imaginary parts:

2n
∑

p=1
γp R(τp)v =

∑

Imτq>0
Re{2γq R(τq)v} .

By this approach, even the complex arithmetics are in-
cluded, the result is clearly a real vector.
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Requirements for the Filter

• The transfer function of the ideal bandpass filter with
passband interval I = [α, β] is the characteristic func-
tion of the interval, which is not a rational function.

• Therefore, a rational function approximation of the
characteristic function is used as the transfer function.

• This is similar to the approach for the bandpass filters
of analog electronic circuits[1][3].

• The magnitude of the transfer function |f (λ)| will be:

– near unity, when λ is in the passband.

– quite small (near zero), when λ is separated from
the passband.
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Typical Filters

• Typical filter designs for the analog circuits are:

1. Butterworth ,

2. Chebyshev ,

3. inverse-Chebyshev ,

4. elliptic .

• By the analogy, the above filter designs are available
for the diagonalization method also.
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Recipe for Filter Design

• We define g(t) = f (λ) by the linear map between the
intervals λ ∈ [α, β] and t ∈ [−1, 1] as:

λ = L(t) = L′ · t + L(0) ≡ β − α

2
t +

β + α

2
.

• When the fractional expansion of the transfer function
g(t) in the normalized coordinate t is:

g(t) = c∞ +
2n
∑

p=1

cp
t − tp

,

then the corresponding filter operator is:

F = c∞I +
2n
∑

p=1
γp R(τp), where τp = L(tp) and γp = L′ · cp.

• The attenuation function is defined as the reciprocal
of the transfer function: A(t) ≡ 1/g(t).
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Three Shape Parameters of the Attenuation Function.
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Sample Graphs of Attenuation Functions.
µ=1.3, Amax=10[dB], Amin=100[dB].
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Selection of Filter Shape Parameters and the degree n

• Select the type of the filter from:
Butterworth, Chebyshev, inverse-Chebyshev, elliptic.

• Give the three shape parameters for the attenuation
function: µ(> 1), Amax, Amin.

The passband is |t| ≤ 1, and the stopbands are µ ≤ |t|,
where t is the normalized coordinate by the linear map
λ = L(t).

Amax : the upper bound of A in the passband.
Amin : the lower bound of A in the stopbands.
(Hereafter we define Lmin ≡

√

(Amin − 1)/(Amax − 1).)
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• From requirements for the shape of attenuation func-
tion, the minimal degree nmin of the filter is calculated.

The degree n of the filter must be set nmin or more.
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Case 1. Butterworth Filter

The attenuation function is a degree 2n polynomial of t :

A(t) ≡ 1 + ǫ2 t2n .

1.1 Determination of degree for Butterworth filter

Since Amax = 1 + ǫ2, Amin ≤ 1 + ǫ2µ2n.

Then we have ǫ2 = Amax − 1 and µn ≥ Lmin

Therefore, nmin = ceil (ln(Lmin)/ ln(µ)).

The degree n must be no less than nmin.
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1.2 Poles and their coefficients of Butterworth filter

The poles of g(t) are:

tp =
1

ǫ1/n

(

cos θp +
√
−1 sin θp

)

,

where

θp ≡ (2p−1)π

2n
, p=1, 2, . . ., 2n.

The poles are on the circle in the complex plane.
Their imaginary parts are positives for p=1, 2, . . ., n.

The coefficient of pole cp and the value c∞ are:

cp =
−tp
2n

, and c∞ = 0.
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Case 2. Chebyshev Filter

The attenuation function is a degree 2n polynomial of t :

A(t) ≡ 1 + ǫ2 T 2
n(t)

By allowing ripples in the passband, the Chebyshev fil-
ter attains the required bandpass property with lower
degree than the Butterworth.

2.1 Determination of degree for Chebyshev filter

Since Amax = 1 + ǫ2, Amin ≤ 1 + ǫ2Tn
2(µ).

Then we have ǫ2 = Amax − 1 and Tn(µ) ≥ Lmin.

Therefore, nmin = ceil
(

cosh−1(Lmin)/ cosh−1(µ)
)

.

The degree n must be no less than nmin.
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2.2 Poles and their coefficients of Chebyshev filter

The poles of g(t) are:

tp = cosh τ · cos θp +
√
−1 sinh τ · sin θp ,

where

τ =
1

n
sinh−1(

1

ǫ
), θp =

(2p−1)π

2n
, p=1, 2, . . ., 2n.

In the complex plane, the poles are located on the el-
lipse whose foci are −1 and 1. Their imaginary parts are
positives for p=1, 2, . . ., n.

The residues cp and c∞ are:

cp =
−Tn(tp)

2T ′
n(tp)

=
−Tn(tp)

2nUn−1(tp)
, and c∞=0.

Here, Uk(x) denotes the degree k polynomial of Cheby-
shev of the 2nd kind.
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Case 3. Inverse-Chebyshev Filter

The attenuation is a degree 2n rational function of t :

A(t) ≡ 1 + ǫ2












Tn(µ)

Tn(µ/t)













2

.

3.1 Determination of degree for inverse-Chebyshev filter

Since Amax = 1 + ǫ2, Amin ≤ 1 + ǫ2Tn
2(µ).

Then we have ǫ2 = Amax − 1 and Tn(µ) ≥ Lmin.

Therefore, nmin = ceil
(

cosh−1(Lmin)/ cosh−1(µ)
)

.

The degree n has to be set no less than nmin.

The formula of nmin for the inverse-Chebyshev filter is
identical to that of the Chebyshev filter.
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By allowing ripples in the stopband, the inverse-Chebyshev

filter attains the required bandpass property with lower
degree than the Butterworth.

3.2 Poles and their coefficients of inverse-Chebyshev filter

We define 1
c = ǫ Tn(µ), τ=1

n sinh−1(1
c) and θp=

2(p−1)π
2n , p=1, 2, . . ., 2n.

The poles of g(t) = 1/A(t) are tp = µ/xp ,
where xp = cosh τ · cos θp −

√
−1 sinh τ · sin θp.

(The zeros of g(t) are zj = µ/ cos θj, j=1, 2, . . ., 2n.)

The residues cp are:

cp =
−µ

2xp
2

Tn(xp)

T ′
n(xp)

=
−µ

nxp
2

Tn(xp)

nUn−1(xp)
.

The value of c∞ is 0 for odd n, 1
1+(1/c)2

for even n.
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Case 4. Elliptic Filter

The attenuation is a degree 2n rational function of t :

A(t) ≡ 1 + ǫ2Rn
2(t).

The rational function Rn of degree n has a parametric
representation by Jacobi’s elliptic functions as:

Rn(t) = sn


K(L−1)(nu + δn), L−1


 , t = sn[K(µ−1)u, µ−1] ,

where K(k) is the 1st kind complete elliptic integral,

the symbol δn is 0 for odd n, (−1)n/2 for even n.

4.1 Determination of degree for elliptic filter

Since Amax = 1 + ǫ2, Amin ≤ 1 + ǫ2Rn
2(µ).

Then we have ǫ2 = Amax − 1 and Rn(µ) ≥ Lmin.
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Therefore, nmin = ceil








K′(L−1
min)

K(L−1
min)

K(µ−1)
K′(µ−1)







,

where K(k) denotes the elliptic complete integral of
the 1st kind, and K ′(k)≡K(

√
1−k2).

The degree n is set no less than nmin.

By allowing the ripples in both the passband and the
stopband, the elliptic filter attains the required bandpass
property with lower degree than the Chebyshev or the
inverse-Chebyshev.

The value of L is calculated from the value of µ and n as:

L−1 = µ−n floor(n/2)
∏

j=1
sn4















(2j − 1)K(µ−1)

n
, µ−1















.
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4.2 Poles and their coefficients of elliptic filter

The poles tp of g(t) = 1/A(t) are calculated by

b ≡ F (tan−1 (ǫ−1),
√

1−L−2),

F (φ, k) ≡ ∫ φ
0 (1−k2 sin2 x)−

1
2 dx is 1st kind elliptic integral.

τ ≡ K(µ−1)b
K(L−1)n

, θp = (2p+1−mod(n, 2))K(µ−1)
n ,

then tp = sn(θp+
√
−1 τ, µ−1), p = 1, 2, . . . , 2n.

The coefficients of poles are also given by:

cp = ζ ·
√
−1 cn(θp+

√
−1 τ, µ−1) dn(θp+

√
−1 τ, µ−1),

where ζ = −1
2n

K(µ−1)
K(L−1)

√

√

√

√

√

√

ǫ2

(1+ǫ2)(ǫ2+L−2)
.

The value of c∞ is 0 for odd n, 1
1+ǫ2L2 for even n.
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Note: c∞ may be Neglected

• For the cases of Butterworth and Chebyshev, c∞ is
always zero.
For the inverse-Chebyshev and the elliptic cases, c∞
is zero for odd n and non-zero for even n.

• However, even in the case c∞ is non-zero, the term
with coefficient c∞ may be dropped off from the filter’s
fractional expansion.
Because, Amin is usually taken to a very large value
therefore c∞ = g(∞) ≤ 1/Amin is a very small value and
negligible.
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Sample Plots of the Complex Poles of Filters.
µ=1.1, Amax=3[dB], Amin=100[dB].
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Tables of Values of nmin.

Amax=3[dB], Amin=150[dB]
nmin

µ Butter Cheb elliptic
1.001 17281 402 35
1.003 5766 232 30
1.005 3463 180 28
1.01 1736 128 26
1.03 585 74 22
1.05 355 58 20
1.1 182 41 17
1.2 95 29 15
1.3 66 24 13
1.5 43 19 12

Amax=3[dB], Amin=100[dB]
nmin

µ Butter Cheb elliptic
1.001 11522 274 24
1.003 3845 158 21
1.005 2309 123 20
1.01 1158 87 18
1.03 390 50 15
1.05 237 39 14
1.1 121 28 12
1.2 64 20 10
1.3 44 17 9
1.5 29 13 8

Amax=3[dB], Amin=80[dB]
nmin

µ Butter Cheb elliptic
1.001 9218 222 20
1.003 3076 128 17
1.005 1848 100 16
1.01 926 71 15
1.03 312 41 13
1.05 189 32 11
1.1 97 23 10
1.2 51 16 9
1.3 36 14 8
1.5 23 11 7

Amax=1[dB], Amin=80[dB]
nmin

µ Butter Cheb elliptic
1.001 9891 237 21
1.003 3301 137 19
1.005 1983 106 17
1.01 994 75 16
1.03 335 44 13
1.05 203 34 12
1.1 104 24 11
1.2 55 17 9
1.3 38 14 8
1.5 25 11 7

Graphs of Values of nmin.
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Behaviors of the Degree of Filters when µ→1.

The asymptotic behaviors for µ→1 or ln µ→0 for the cases
of the filters are derived below. The superiority of the
elliptic filter should be stressed.

Case of Butterworth
For µ→1 then we have ln µ ≈ µ−1. Therefore, nmin =
ln Lmin
ln(µ) ≈ln Lmin

µ−1 or in logarithm: log nmin ≈ log(ln Lmin)−log(µ−1).

Cases of Chebyshev and inverse-Chebyshev
For µ→1 then we have cosh−1 µ≈

√

2(µ−1). Because Lmin is

a very large number, we also have cosh−1 Lmin≈ ln{2Lmin}.
Therefore we have nmin=cosh−1 Lmin

cosh−1 µ
≈ ln(2Lmin)√

2(µ−1)
or in logarithm:

log nmin ≈ log( 1√
2
ln(2Lmin)) − 1

2 log(µ−1).
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Cases of elliptic

We have defined K(k) ≡ ∫ π/2
0

dθ√
1−k2 sin2 θ

.

For k≪1, from well known formulae [Abramowitz and
Stegan,Chap.17]:

K(k) ≈ π

2
+ O(k2).

q(k) ≡ exp













−π
K ′(k)

K(k)













=
k2

16
+ O(k4).

And k → 1,

lim
k→1



















K(k) − 1

2
ln(

16

1 − k2)



















= 0.

Therefore, for the case of µ→1,

K ′(µ−1) = K(
√

1−µ−2) ≈ π

2



1 + O(1−µ−2)


 .
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And, K(µ−1) ≈ 1
2 ln( 16

1−µ−2).

Since 1−µ−2 = µ+1
µ2 (µ−1) ≈ 2(µ−1)+O

(

(µ−1)2
)

, and K ′(µ−1) ≈
π
2 (1 + O(µ−1)). So,

{K ′(µ−1)/K(µ−1)}−1 ≈ 1

π
ln(

8

µ−1
){1 + O(µ−1)}.

Eventually, we have obtained a good asymptotic approx-
imation of nmin for µ≪1:

nmin =



























K ′(L−1
min)

K(L−1
min)



























/



























K ′(µ−1)

K(µ−1)



























≈ 2

π2 ln (4Lmin) ln(
8

ln µ
)

or in logarithm:

log nmin ≈ log



















2

π2 ln(4Lmin)



















+ log



















ln











8

ln µ





























.

27



Summary of the Asymptotic Behavior of nmin.

If we let x ≡ 1/(µ − 1) then µ → 1 means x → ∞.

The asymptotic behaviors of nmin can be rewritten:

Butterworth ≈ ln(Lmin) x,
Chebyshev ≈ ln(2Lmin)

√

x/2,
inverse-Chebyshev ≈ ln(2Lmin)

√

x/2,

elliptic ≈ (2/π2) ln(4Lmin) ln(8x).

Here, Lmin ≡
√

(Amin − 1)/(Amax − 1).
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Value of Relative Threshold for SVD Analysis

After the filter is applied, the SVD analysis with B-
metric is made.
The regularization is added to reduce the effects of round-
off errors.
(Those singular vectors are removed whose singular val-
ues are relatively very small.)

When the relative threshold is set to εSVD, the round-
off errors in the remained vectors could be magnified
relatively ε−1

SVD times.

• Since random vectors are filtered, the magnitudes of
eigenvectors in the output vectors are distributed as
the statistical variables.
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• The value of relative threshold cannot be set less than
r ≡ Amax/Amin.

• A suitable value of the threshold would be some tiny
value such as between r2/3 and r1/3.

• By the numerical calculation, the precision of the com-
putation limits the attainable value of Amin. There-
fore, the suitable value of the threshold depends also
on the precision.

For the higher precision computations, the risk to miss
some eigenpairs will be reduced if the threshold is re-
duced.

• Theoretical considerations on the statistics would be
necessary.
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Some Examples by Experiments

System: CPU: intel Core i7 920(only single core is used); Memory:12Gbytes

DDR3-1333; Compiler:intel Fortran v11 for intel64 with option -fast; FP numbers:

IEEE 64-bit float; OS: Fedora10 for intel64.

A, B are size N real symmetric banded matrices with lower band-
width h (matrix elements ai,j, bi,j have values only when |i − j|≤h).
The matrix elements inside the bandwidth are ai,j ≡ max(i, j) − 1，
bi,j ≡ 1/(i + j − 1) + δi,j. Where, δi,j denotes the Kronecker’s symbol.
And N = 106, h = 10, the interval is [−10, 10]. There are 52 eigenpairs
whose eigenvalues are in this interval.

For an approximated eigenpair (λ,v), the norm of the residual vector
r ≡ (A − λB)v is defined by ∆ ≡

√
rTB−1r which gives an upper-

bound of the distance of the calculated eigenvalue from some true
eigenvalue. This norm can be used to estimate the qualities of
approximated pairs.

In graphs, ITER0 plots eigenpairs by the filter diagonalization method.
ITER1 plots eigenpairs corrected once by the Rayleigh quotient in-
verse iteration. ITER2 plots eigenpairs corrected twice.
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TEST1: With the triplet conditions (µ=1.1, Amax=3[dB], Amin=150[dB]), the elliptic

filter is selected. The degree n is set to the minimal value 17.

The input vectors are 100 random vectors orthonormalized in B-metric. The rel-

ative threshold 10−7 is used to cut the singular values. After the cut-off, the rank

of the singular vectors is 54. There are 52 approximated pairs whose eigenvalues

are in the interval. The elapsed times are 456 seconds for the filter diagonalization

method, and 85 seconds for the two cycles of the inverse iterations.
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TEST2: With the triplet conditions (µ=1.01, Amax=3[dB], Amin=150[dB]), the ellip-

tic filter is selected. The degree n is set to the minimal value 26.

The input vectors are 100 random vectors orthonormalized in B-metric. The rel-

ative threshold 10−7 is used to cut the singular values. After the cut-off, the rank

of the singular vectors is 52. There are 52 approximated pairs whose eigenvalues

are in the interval. The elapsed times are 644 seconds for the filter diagonalization

method, and 82 seconds for the two cycles of inverse iterations.
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TEST3: With the triplet conditions (µ=1.1, Amax=3[dB], Amin=100[dB]), the elliptic

filter is selected. The degree n is set to the minimal value 12.

The input vectors are 100 random vectors orthonormalized in B-metric. The rel-

ative threshold 10−7 is used to cut the singular values. After the cut-off, the rank

of the singular vectors is 55. There are 52 approximated pairs whose eigenvalues

are in the interval. The elapsed times are 352 seconds for the filter diagonalization

method, and 87 seconds for the two cycles of inverse iterations.
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