Use R ::= QQ[t,x,y,z];
I := Ideal(x^2-yt, xy-zt, xy);
$gb.Start_Res(I); -- start Interactive Groebner Framework
$gb.Steps(I,1); -- take one step in calculation of resolution
$gb.GetRes(I); -- the resolution so far
0 --> R(-2)
-------------------------------
$gb.Steps(I,1); -- one more step
$gb.GetResLen(I); -- the computed resolution still has length 1
1
-------------------------------
$gb.GetBettiMatrix(I); -- the Betti Matrix so far
----
----
0
2
----
-------------------------------
$gb.GetRes(I);
0 --> R^2(-2)
-------------------------------
$gb.Steps(I,5); -- five more steps
$gb.GetRes(I);
0 --> R(-4) --> R^3(-2)
-------------------------------
$gb.Complete(I); -- complete the calculation
$gb.GetResLen(I);
3
-------------------------------
$gb.GetBettiMatrix(I);
--------------
--------------
0 0 0
0 0 3
0 0 0
0 4 0
2 0 0
--------------
-------------------------------
$gb.GetRes(I);
0 --> R^2(-5) --> R^4(-4) --> R^3(-2)
-------------------------------
|