[BACK]Return to weight CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / lib

Diff for /OpenXM_contrib2/asir2000/lib/weight between version 1.21 and 1.38

version 1.21, 2004/01/07 08:15:16 version 1.38, 2004/05/18 10:03:15
Line 4  load("gr")$
Line 4  load("gr")$
 #define EPS 1E-6  #define EPS 1E-6
 #define TINY 1E-20  #define TINY 1E-20
 #define MAX_ITER 100  #define MAX_ITER 100
 #define ROUND_THRESHOLD 0.4  
   
 def rotate(A,I,J,K,L,C,S){  def rotate(A,I,J,K,L,C,S){
   
Line 112  def jacobi(N,A,W){
Line 111  def jacobi(N,A,W){
         return 1;          return 1;
 }  }
   
 def nonzerovec(A){  def interval2value(A,Vars){
   
         for(I=0;I<size(A)[0];I++)          B=atl(A)$
                 if(A[I]!=0)  
                         return 1$  
   
         return 0$          if(length(B)>2){
                   print("bug")$
                   return []$
           }
           else if(length(B)==0){
                   if(fop(A)==0)
                           return [Vars,1]$
                   else
                           return []$
           }
           else if(length(B)==1){
   
                   C=fargs(B[0])$
                   D=vars(C)$
                   E=solve(C,D)$
   
                   if(fop(B[0])==15)
                           return [Vars,E[0][1]+1]$
                   else if(fop(B[0])==11)
                           return [Vars,E[0][1]-1]$
                   else if(fop(B[0])==8)
                           return [Vars,E[0][1]]$
                   else
                           return []$
           }
           else{
   
                   C=fargs(B[0])$
                   D=vars(C)$
                   E=solve(C,D)$
   
                   C=fargs(B[1])$
                   D=vars(C)$
                   F=solve(C,D)$
   
                   return [Vars,(E[0][1]+F[0][1])/2]$
           }
   
   }
   
   def fixpointmain(F,Vars){
   
           RET=[]$
           for(I=length(Vars)-1;I>=1;I--){
   
                   for(H=[],J=0;J<I;J++)
                           H=cons(Vars[J],H)$
   
                   G=interval2value(qe(ex(H,F)),Vars[I])$
   
                   if(G==[])
                           return RET$
                   else
                           RET=cons(G,RET)$
   
                   F=subf(F,G[0],G[1])$
           }
   
           G=interval2value(simpl(F),Vars[0])$
   
           if(G==[])
                   return RET$
           else
                   RET=cons(G,RET)$
   
           return RET$
 }  }
   
   
   def fixedpoint(A,FLAG){
   
           Vars=vars(A)$
   
           N=length(A)$
   
           if (FLAG==0)
                   for(F=@true,I=0;I < N; I++ ) { F = F @&& A[I] @> 0$ }
           else if (FLAG==1)
                   for(F=@true,I=0;I < N; I++ ) { F = F @&& A[I] @< 0$ }
   
           return fixpointmain(F,Vars)$
   }
   
 def junban(A,B){  def junban(A,B){
         return (A<B ? 1:(A>B ? -1:0))$          return (A<B ? 1:(A>B ? -1:0))$
 }  }
   
 def worder(A,B){  
         return (A[0]<B[0] ? 1:(A[0]>B[0] ? -1:0))$  
 }  
   
 def bsort(A){  def bsort(A){
   
         K=size(A)[0]-1$          K=size(A)[0]-1$
Line 146  def bsort(A){
Line 219  def bsort(A){
         return A$          return A$
 }  }
   
 def perm(I,P,TMP){  def wsort(A,B,C,ID){
   
         if(I>0){          D=newvect(length(B))$
                 TMP=perm(I-1,P,TMP)$          for(I=0;I<length(B);I++)
                 for(J=I-1;J>=0;J--){                  D[I]=[A[I],B[I],C[I]]$
                         T=P[I]$  
                         P[I]=P[J]$  
                         P[J]=T$  
                         TMP=perm(I-1,P,TMP)$  
                         T=P[I]$  
                         P[I]=P[J]$  
                         P[J]=T$  
                 }  
   
                 return TMP$          D=bsort(D)$
         }  
         else{  
                 for(TMP0=[],K=0;K<size(P)[0];K++)  
                         TMP0=cons(P[K],TMP0)$  
   
                 TMP=cons(TMP0,TMP)$  
                 return TMP$  
         }  
 }  
   
 def marge(A,B){          for(E=[],I=0;I<length(B);I++)
                   E=cons(D[I][1],E)$
           E=reverse(E)$
   
         RET=[]$          for(F=[],I=0;I<length(B);I++)
         for(I=0;I<length(A);I++)                  F=cons(D[I][2],F)$
                 for(J=0;J<length(B);J++)          F=reverse(F)$
                         RET=cons(append(A[I],B[J]),RET)$  
   
         return RET$  
 }  
   
 def wsort(A,B,C,FLAG,ID){  
   
         if(FLAG==0){  
                 D=newvect(length(B))$  
                 for(I=0;I<length(B);I++)  
                         D[I]=[A[I],B[I],C[I]]$  
   
                 D=bsort(D)$  
                 E=[]$  
                 for(I=0;I<length(B);I++)  
                         E=cons(D[I][1],E)$  
                 E=reverse(E)$  
                 F=[]$  
                 for(I=0;I<length(B);I++)  
                         F=cons(D[I][2],F)$  
                 F=reverse(F)$  
   
                 return [[ID,E,F]]$          return [[ID,E,F]]$
         }  
         else{  
                 D=newvect(length(B))$  
                 for(I=0;I<length(B);I++)  
                         D[I]=[A[I],B[I],C[I]]$  
   
                 D=qsort(D,worder)$  
                 D0=[]$  
   
                 for(I=0,J=0,TMP=[],X=0;I<size(D)[0];I++){  
                         if(X==D[I][0])  
                                 TMP=cons(cdr(D[I]),TMP)$  
                         else{  
                                 D0=cons(TMP,D0)$  
                                 TMP=[]$  
                                 TMP=cons(cdr(D[I]),TMP)$  
                                 X=car(D[I])$  
                         }  
                 }  
                 D0=cdr(reverse(cons(TMP,D0)))$  
                 D0=map(ltov,D0)$  
                 for(I=0,TMP=[[]];I<length(D0);I++){  
                         TMP0=perm(length(D0[I])-1,D0[I],[])$  
                         TMP=marge(TMP,TMP0)$  
                 }  
   
                 RET=[]$  
                 for(I=0;I<length(TMP);I++){  
                         TMP0=[]$  
                         TMP1=[]$  
                         for(J=0;J<length(TMP[I]);J++){  
                                 TMP0=cons(TMP[I][J][0],TMP0)$  
                                 TMP1=cons(TMP[I][J][1],TMP1)$  
                         }  
                         TMP0=reverse(TMP0)$  
                         TMP1=reverse(TMP1)$  
   
                         RET=cons([ID,TMP0,TMP1],RET)$  
                 }  
   
                 return RET$  
         }  
 }  }
   
 def nonposdegchk(Res){  def nonposdegchk(Res){
Line 254  def nonposdegchk(Res){
Line 249  def nonposdegchk(Res){
   
 def getgcd(A,B){  def getgcd(A,B){
   
         VarsNumA=length(A)$          Anum=length(A)$
         VarsNumB=length(B)$  
   
         C=newvect(VarsNumB,B)$          TMP=[]$
           for(I=0;I<length(B);I++){
   
         for(I=0;I<VarsNumA;I++){                  for(J=0;J<Anum;J++)
                           if(B[I]==A[J][0])
                                   break;
   
                 for(J=0;J<VarsNumB;J++)                  if(J==Anum)
                         if(B[J]==A[I][0])                          TMP=cons([B[I],B[I]],TMP)$
                                 break$  
   
                 if(J<VarsNumB)  
                         C[J]=A[I][1]$  
         }          }
           A=append(A,TMP)$
   
         D=0$          Anum=length(A)$
         for(I=0;I<VarsNumB;I++)          A=map(ltov,A)$
                 D=gcd(D,C[I])$  
   
           for(D=0,I=0;I<Anum;I++)
                   D=gcd(D,A[I][1])$
   
         if(D!=0){          if(D!=0){
                 C=C/D$                  for(I=0;I<Anum;I++)
                 C=map(red,C)$                          A[I][1]=red(A[I][1]/D)$
         }          }
   
         for(L=1,D=0,I=0;I<VarsNumB;I++){          for(L=1,D=0,I=0;I<Anum;I++){
                 if(type(TMP=dn(C[I]))==1)                  if(type(TMP=dn(A[I][1]))==1)
                         L=ilcm(L,TMP)$                          L=ilcm(L,TMP)$
   
                 if(type(TMP=nm(C[I]))==1)                  if(type(TMP=nm(A[I][1]))==1)
                         D=igcd(D,TMP)$                          D=igcd(D,TMP)$
         }          }
   
         C=C*L$          for(I=0;I<Anum;I++)
         if(D!=0)                  A[I][1]=A[I][1]*L$
                 C=C/D$  
   
         RET=[]$          if(D!=0){
         for(I=0;I<VarsNumB;I++)  
                 RET=cons([B[I],C[I]],RET)$  
   
         return RET$                  for(I=0;I<Anum;I++)
                           A[I][1]=A[I][1]/D$
           }
   
           return map(vtol,A)$
 }  }
   
 def makeret(Res,Vars,FLAG){  def makeret(Res,Vars,FLAG){
Line 304  def makeret(Res,Vars,FLAG){
Line 301  def makeret(Res,Vars,FLAG){
   
         ResVec=newvect(ResNum)$          ResVec=newvect(ResNum)$
   
         for(M=0,I=0;I<ResNum;I++){          if(FLAG)
                 if(member(Res[I][0],Vars)){                  M=0$
                         ResVec[I]=Res[I][1]$          else
                   M=-1$
   
                         if(FLAG && type(ResVec[I])==1){          for(I=0;I<ResNum;I++){
                                 if(M==0)          if(member(Res[I][0],Vars)){
                                         M=ResVec[I]$                  ResVec[I]=Res[I][1]$
                                 else  
                                         if(ResVec[I]<M)  
                                                 M=ResVec[I]$  
                         }  
                 }  
         }  
   
         if(M!=0)                          if(FLAG){
                                   if(type(ResVec[I])==1){
                           if(M==0)
                                   M=ResVec[I]$
                           else
                                   if(ResVec[I]<M)
                                   M=ResVec[I]$
                                   }
                                   else
                                           M=-1$
                           }
                   }
        }
   
           if(M!=-1)
                 ResVec=ResVec/M;                  ResVec=ResVec/M;
   
         RET=newvect(VarsNum,Vars)$          RET=newvect(VarsNum,Vars)$
Line 332  def makeret(Res,Vars,FLAG){
Line 338  def makeret(Res,Vars,FLAG){
                         RET[J]=ResVec[I]$                          RET[J]=ResVec[I]$
         }          }
   
   
         for(J=0;J<length(Vars);J++)  
                 RET=map(subst,RET,Vars[J],  
                         strtov(rtostr(Vars[J])+"_deg"))$  
   
         for(I=0;I<VarsNum;I++)          for(I=0;I<VarsNum;I++)
                 if(type(RET[I])!=1)                  if(type(RET[I])!=1)
                         return [1,RET]$                          return [1,RET]$
Line 348  def roundret(V){
Line 349  def roundret(V){
   
         VN=size(V)[0]$          VN=size(V)[0]$
   
           K=1$
         RET0=V$          RET0=V$
         for(I=1;I<1000;I++){          RET1=map(drint,RET0)$
                 RET1=I*RET0$          S=0$
                 for(J=0;J<VN;J++){          for(J=0;J<VN;J++)
                         X=drint(RET1[J])$                  S+=(RET0[J]-RET1[J])^2$
                         if(dabs(X-RET1[J])<ROUND_THRESHOLD)  
                                 RET1[J]=X$          for(I=2;I<10;I++){
                         else                  RET0=I*V$
                                 break$                  RET1=map(drint,RET0)$
                 }  
                 if(J==VN)                  T=0$
                         break$                  for(J=0;J<VN;J++)
                           T+=(RET0[J]-RET1[J])^2$
   
                   if(T<S){
                           K=I$
                           S=T$
                   }
         }          }
   
         if(I==1000)          return map(drint,K*V)$
                 return []$  
         else  
                 return RET1$  
 }  }
   
 def chkou(L,ExpMat,CHAGORD){  def chkou(L,ExpMat,CHAGORD){
Line 449  def checktd(PolyList,Vars,ResVars){
Line 454  def checktd(PolyList,Vars,ResVars){
         return 1$          return 1$
 }  }
   
   def value2(Vars,Ans,Ba,FLAG){
   
           N=length(Vars)$
           Res=newvect(N)$
           for(I=0;I<N;I++){
                   Res[I]=newvect(2)$
                   Res[I][0]=Vars[I]$
                   Res[I][1]=Ba*Ans[I]$
           }
           Res=map(vtol,Res)$
           Res=vtol(Res)$
   
           Res=getgcd(Res,Vars)$
   
           if(nonposdegchk(Res)){
                   TMP1=makeret(Res,Vars,FLAG)$
                   return vtol(TMP1[1])$
           }
           else
                   return []$
   }
   
 def qcheck(PolyList,Vars,FLAG){  def qcheck(PolyList,Vars,FLAG){
   
         RET=[]$          RET=[]$
Line 472  def qcheck(PolyList,Vars,FLAG){
Line 499  def qcheck(PolyList,Vars,FLAG){
   
         VarsList=[]$          VarsList=[]$
         for(I=0;I<VarsNum;I++)          for(I=0;I<VarsNum;I++)
                 if(member(Vars[CHAGORD[I]],Rea))                  if(member(TMP0=Vars[CHAGORD[I]],Rea))
                         VarsList=cons(Vars[CHAGORD[I]],VarsList)$                          VarsList=cons(Vars[CHAGORD[I]],VarsList)$
   
         Res=solve(reverse(SolveList),reverse(VarsList))$          Res=solve(reverse(SolveList),reverse(VarsList))$
Line 480  def qcheck(PolyList,Vars,FLAG){
Line 507  def qcheck(PolyList,Vars,FLAG){
   
         if(nonposdegchk(Res)){          if(nonposdegchk(Res)){
   
                 ResVars=makeret(Res,Vars,0)$                  TMP1=makeret(Res,Vars,0)$
   
                 if(checktd(PolyList,Vars,ResVars[1])==1){                  if(checktd(PolyList,Vars,TMP1[1])==1){
                         if(ResVars[0]==0){  
                                 RET=append(RET,wsort(ResVars[1],Vars,  
                                         ResVars[1],FLAG,0))$  
   
                                 return RET$                          if(FLAG==0){
   
                                   if(TMP1[0]==0)
                                           RET=append(RET,wsort(TMP1[1],Vars,TMP1[1],0))$
                                   else{
   
                                           TMP=vtol(TMP1[1])$
                                           RET0=[]$
                                           if((TMP0=fixedpoint(TMP,0))!=[]){
   
                                                   for(I=0;I<length(TMP0);I++)
                                                           TMP=map(subst,TMP,TMP0[I][0],TMP0[I][1])$
                                                   RET0=value2(Vars,TMP,1,0)$
   
                                                   if(RET0!=[])
                                                           RET0=wsort(RET0,Vars,RET0,-1)$
                                           }
   
                                           TMP=vtol(TMP1[1])$
                                           if(RET0==[] && (TMP0=fixedpoint(TMP,1))!=[]){
   
                                                   for(I=0;I<length(TMP0);I++)
                                                           TMP=map(subst,TMP,TMP0[I][0],TMP0[I][1])$
                                                   RET0=value2(Vars,TMP,-1,0)$
   
                                                   if(RET0!=[])
                                                           RET0=wsort(RET0,Vars,RET0,-1)$
                                           }
                                           RET=append(RET,RET0)$
                                   }
                         }                          }
                         else{                          else if(FLAG==1)
                                 RET=append(RET,[[0,Vars,vtol(ResVars[1])]])$                                  RET=append(RET,[[0,Vars,vtol(TMP1[1])]])$
                                 return RET$  
                         }  
                 }                  }
                 else  
                         return []$  
         }          }
         else  
                 return []$  
   
           return RET$
 }  }
   
 def leastsq(NormMat,ExpMat,Vars,FLAG,ID){  def unitweight2(NormMat0,ExpMat,Vars,FLAG,ID){
   
         RET=[]$          RET=[]$
   
         ExpMatRowNum=size(ExpMat)[0]$          ExpMatRowNum=size(ExpMat)[0]$
         ExpMatColNum=size(ExpMat[0])[0]$          ExpMatColNum=size(ExpMat[0])[0]$
           ExtMatColNum=ExpMatColNum+1$
   
           ExtVars=append(Vars,[uc()])$
   
         if(NormMat==0){          if(NormMat==0){
                 NormMat=newmat(ExpMatColNum,ExpMatColNum)$  
   
                   NormMat0=newvect(ExtMatColNum)$
                   for(I=0;I<ExtMatColNum;I++)
                           NormMat0[I]=newvect(ExtMatColNum)$
   
                 for(I=0;I<ExpMatColNum;I++)                  for(I=0;I<ExpMatColNum;I++)
                         for(J=I;J<ExpMatColNum;J++)                          for(J=I;J<ExpMatColNum;J++)
                                 for(K=0;K<ExpMatRowNum;K++)                                  for(K=0;K<ExpMatRowNum;K++)
                                         NormMat[I][J]+=                                          NormMat0[I][J]+=
                                                 ExpMat[K][I]*ExpMat[K][J]$                                                  ExpMat[K][I]*
                                                   ExpMat[K][J]$
         }          }
   
         BVec=newvect(ExpMatColNum)$  
   
         for(I=0;I<ExpMatColNum;I++)          for(I=0;I<ExpMatColNum;I++)
                 for(J=0;J<ExpMatRowNum;J++)                  for(K=0;K<ExpMatRowNum;K++)
                         BVec[I]+=ExpMat[J][I]$                          NormMat0[I][ExpMatColNum]-=ExpMat[K][I]$
   
         SolveList=[]$          NormMat0[ExpMatColNum][ExpMatColNum]=ExpMatRowNum$
         for(I=0;I<ExpMatColNum;I++){  
                 TMP=0$  
                 for(J=0;J<I;J++)  
                         TMP+=NormMat[J][I]*Vars[J]$  
   
                 for(J=I;J<ExpMatColNum;J++)          WorkMat=newvect(ExtMatColNum)$
                         TMP+=NormMat[I][J]*Vars[J]$          for(I=0;I<ExtMatColNum;I++)
                   WorkMat[I]=newvect(ExtMatColNum)$
   
                 TMP-=BVec[I]$          if(jacobi(ExtMatColNum,NormMat0,WorkMat)){
                 SolveList=cons(TMP,SolveList)$  
         }  
   
         Rea=vars(SolveList)$                  Res=newvect(ExtMatColNum)$
                   for(I=0;I<ExtMatColNum;I++){
                           Res[I]=newvect(2)$
                           Res[I][0]=ExtVars[I]$
                           Res[I][1]=WorkMat[ExtMatColNum-1][I]$
                   }
   
         VarsList=[]$                  if(nonposdegchk(Res)){
         for(I=0;I<length(Vars);I++)  
                 if(member(Vars[I],Rea))  
                         VarsList=cons(Vars[I],VarsList)$  
   
         Res=solve(SolveList,VarsList)$                          TMP1=makeret(Res,Vars,1)$
         Res=getgcd(Res,Rea)$  
   
         if(nonposdegchk(Res)){                          if(FLAG==0){
                                   TMP=roundret(TMP1[1])$
   
                 TMP1=makeret(Res,Vars,1)$                                  RET=append(RET,wsort(TMP1[1],Vars,map(drint,TMP1[1]),ID))$
   
                 if(TMP1[0]==0){                                  if(TMP!=[])
                         TMP=roundret(TMP1[1])$                                          RET=append(RET,wsort(TMP1[1],Vars,TMP,ID+1))$
                           }
                         RET=append(RET,wsort(TMP1[1],Vars,                          else if(FLAG==1)
                                 map(drint,TMP1[1]*1.0),FLAG,ID))$                                  RET=append(RET,[[ID,Vars,vtol(TMP1[1])]])$
   
                         if(TMP!=[])  
                                 RET=append(RET,wsort(TMP1[1],Vars,  
                                         TMP,FLAG,ID+1))$  
   
                         return RET$  
                 }                  }
                 else{          }
                         RET=append(RET,[[ID,Vars,vtol(TMP1[1]*1.0)]])$  
                         return RET$          return [NormMat0,RET]$
                 }  
         }  
         else  
                 return RET$  
   
 }  }
   
 def unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG){  def unitweight1(ExpMat,Vars,PolyListNum,OneMat,FLAG){
   
         RET=[]$          RET=[]$
   
Line 588  def unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG){
Line 627  def unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG){
   
         ExtVars=reverse(ExtVars)$          ExtVars=reverse(ExtVars)$
   
         NormMat0=newvect(ExpMatColNum)$          NormMat0=newvect(ExpMatColNum+1)$
         for(I=0;I<ExpMatColNum;I++)          for(I=0;I<ExpMatColNum;I++)
                 NormMat0[I]=newvect(ExpMatColNum)$                  NormMat0[I]=newvect(ExpMatColNum+1)$
   
         for(I=0;I<ExpMatColNum;I++)          for(I=0;I<ExpMatColNum;I++)
                 for(J=I;J<ExpMatColNum;J++)                  for(J=I;J<ExpMatColNum;J++)
Line 603  def unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG){
Line 642  def unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG){
         for(I=0;I<ExtMatColNum;I++)          for(I=0;I<ExtMatColNum;I++)
                 NormMat1[I]=newvect(ExtMatColNum)$                  NormMat1[I]=newvect(ExtMatColNum)$
   
   
         WorkMat=newvect(ExtMatColNum)$          WorkMat=newvect(ExtMatColNum)$
         for(I=0;I<ExtMatColNum;I++)          for(I=0;I<ExtMatColNum;I++)
                 WorkMat[I]=newvect(ExtMatColNum)$                  WorkMat[I]=newvect(ExtMatColNum)$
   
   
         for(I=0;I<ExpMatColNum;I++)          for(I=0;I<ExpMatColNum;I++)
                 for(J=I;J<ExpMatColNum;J++)                  for(J=I;J<ExpMatColNum;J++)
                         NormMat1[I][J]=NormMat0[I][J]$                          NormMat1[I][J]=NormMat0[I][J]$
Line 616  def unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG){
Line 653  def unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG){
         for(I=0;I<ExpMatColNum;I++)          for(I=0;I<ExpMatColNum;I++)
                 for(J=0;J<PolyListNum;J++)                  for(J=0;J<PolyListNum;J++)
                         for(K=OneMat[J];K<OneMat[J+1];K++)                          for(K=OneMat[J];K<OneMat[J+1];K++)
                                 NormMat1[I][J+ExpMatColNum]-=                                  NormMat1[I][J+ExpMatColNum]-=ExpMat[K][I]$
                                         ExpMat[K][I]$  
   
         for(I=0;I<PolyListNum;I++)          for(I=0;I<PolyListNum;I++)
                 NormMat1[I+ExpMatColNum][I+ExpMatColNum]=OneMat[I+1]-OneMat[I]$                  NormMat1[I+ExpMatColNum][I+ExpMatColNum]=OneMat[I+1]-OneMat[I]$
   
         if(jacobi(ExtMatColNum,NormMat1,WorkMat)){          if(jacobi(ExtMatColNum,NormMat1,WorkMat)){
   
                 Res=newvect(ExpMatColNum)$                  Res=newvect(ExtMatColNum)$
                 for(I=0;I<ExpMatColNum;I++){                  for(I=0;I<ExtMatColNum;I++){
                         Res[I]=newvect(2)$                          Res[I]=newvect(2)$
                         Res[I][0]=Vars[I]$                          Res[I][0]=ExtVars[I]$
                         Res[I][1]=WorkMat[ExtMatColNum-1][I]$                          Res[I][1]=WorkMat[ExtMatColNum-1][I]$
                 }                  }
   
Line 635  def unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG){
Line 671  def unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG){
   
                         TMP1=makeret(Res,Vars,1)$                          TMP1=makeret(Res,Vars,1)$
   
                         TMP=roundret(TMP1[1])$                          if(FLAG==0){
                                   TMP=roundret(TMP1[1])$
   
                         RET=append(RET,wsort(TMP1[1],Vars,                                  RET=append(RET,wsort(TMP1[1],Vars,map(drint,TMP1[1]),1))$
                                 map(drint,TMP1[1]*1.0),FLAG,1))$  
   
                         if(TMP!=[])                                  if(TMP!=[])
                                 RET=append(RET,wsort(TMP1[1],Vars,                                          RET=append(RET,wsort(TMP1[1],Vars,TMP,2))$
                                         TMP,FLAG,2))$                          }
                           else if(FLAG==1)
                                   RET=append(RET,[[1,Vars,vtol(TMP1[1])]])$
                 }                  }
   
         }          }
   
         return [NormMat0,RET]$          return [NormMat0,RET]$
 }  }
   
   def leastsq(NormMat,ExpMat,Vars,FLAG,ID){
   
           RET=[]$
   
           ExpMatRowNum=size(ExpMat)[0]$
           ExpMatColNum=size(ExpMat[0])[0]$
   
           if(NormMat==0){
                   NormMat=newmat(ExpMatColNum,ExpMatColNum)$
   
                   for(I=0;I<ExpMatColNum;I++)
                           for(J=I;J<ExpMatColNum;J++)
                                   for(K=0;K<ExpMatRowNum;K++)
                                           NormMat[I][J]+=
                                                   ExpMat[K][I]*ExpMat[K][J]$
           }
   
           BVec=newvect(ExpMatColNum)$
   
           for(I=0;I<ExpMatColNum;I++)
                   for(J=0;J<ExpMatRowNum;J++)
                           BVec[I]+=ExpMat[J][I]$
   
           SolveList=[]$
           for(I=0;I<ExpMatColNum;I++){
                   TMP=0$
                   for(J=0;J<I;J++)
                           TMP+=NormMat[J][I]*Vars[J]$
   
                   for(J=I;J<ExpMatColNum;J++)
                           TMP+=NormMat[I][J]*Vars[J]$
   
                   TMP-=BVec[I]$
                   SolveList=cons(TMP,SolveList)$
           }
   
           Rea=vars(SolveList)$
   
           VarsList=[]$
           for(I=0;I<length(Vars);I++)
                   if(member(Vars[I],Rea))
                           VarsList=cons(Vars[I],VarsList)$
   
           Res=solve(SolveList,VarsList)$
           Res=getgcd(Res,Rea)$
   
           if(nonposdegchk(Res)){
   
                   TMP1=makeret(Res,Vars,1)$
   
                   if(FLAG==0){
   
                           if(TMP1[0]==0){
   
                                   TMP=roundret(TMP1[1])$
   
                                   RET=append(RET,wsort(TMP1[1],Vars,map(drint,TMP1[1]),ID))$
   
                                   if(TMP!=[])
                                           RET=append(RET,wsort(TMP1[1],Vars,TMP,ID+1))$
                           }
                           else{
   
                                   TMP=vtol(TMP1[1])$
                                   RET0=[]$
                                   if((TMP0=fixedpoint(TMP,0))!=[]){
   
                                           for(I=0;I<length(TMP0);I++)
                                                   TMP=map(subst,TMP,TMP0[I][0],TMP0[I][1])$
                                           RET0=value2(Vars,TMP,1,1)$
   
                                           if(RET0!=[])
                                                   RET0=wsort(RET0,Vars,map(drint,RET0),-ID)$
                                   }
   
                                   TMP=vtol(TMP1[1])$
                                   if(RET0==[] && (TMP0=fixedpoint(TMP,1))!=[]){
   
                                           for(I=0;I<length(TMP0);I++)
                                                   TMP=map(subst,TMP,TMP0[I][0],TMP0[I][1])$
                                           RET0=value2(Vars,TMP,-1,1)$
   
                                           if(RET0!=[])
                                                   RET0=wsort(RET0,Vars,map(drint,RET0),-ID)$
                                   }
   
                                   RET=append(RET,RET0)$
                           }
   
                   }
                   else if(FLAG==1)
                           RET=append(RET,[[ID,Vars,vtol(TMP1[1])]])$
           }
   
           return [NormMat0,RET]$
   }
   
 def weight(PolyList,Vars,FLAG){  def weight(PolyList,Vars,FLAG){
   
         Vars0=vars(PolyList)$          Vars0=vars(PolyList)$
Line 686  def weight(PolyList,Vars,FLAG){
Line 820  def weight(PolyList,Vars,FLAG){
         ExpMat=reverse(ExpMat)$          ExpMat=reverse(ExpMat)$
         ExpMat=newvect(length(ExpMat),ExpMat)$          ExpMat=newvect(length(ExpMat),ExpMat)$
   
         TMP=unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG)$          TMP=unitweight1(ExpMat,Vars,PolyListNum,OneMat,FLAG)$
           if(TMP[1]!=[])
                   RET=append(RET,TMP[1])$
   
         RET=append(RET,TMP[1])$          TMP=leastsq(0,ExpMat,Vars,FLAG,3)$
           if(TMP[1]!=[])
                   RET=append(RET,TMP[1])$
   
         TMP0=leastsq(TMP[0],ExpMat,Vars,FLAG,3)$  
   
         RET=append(RET,TMP0)$  
   
         ExpMat=qsort(ExpMat,junban)$          ExpMat=qsort(ExpMat,junban)$
   
         ExpMat2=[]$          ExpMat2=[]$
Line 703  def weight(PolyList,Vars,FLAG){
Line 837  def weight(PolyList,Vars,FLAG){
   
         if(size(ExpMat)[0]!=length(ExpMat2)){          if(size(ExpMat)[0]!=length(ExpMat2)){
                 ExpMat=newvect(length(ExpMat2),ExpMat2)$                  ExpMat=newvect(length(ExpMat2),ExpMat2)$
                 RET=append(RET,leastsq(0,ExpMat,Vars,FLAG,5))$                  TMP=leastsq(0,ExpMat,Vars,FLAG,5)$
                   if(TMP[1]!=[])
                           RET=append(RET,TMP[1])$
         }          }
         else{          else{
                 TMP0=map(ltov,TMP0)$                  TMP=map(ltov,TMP[1])$
   
                 for(I=0;I<length(TMP0);I++)                  for(I=0;I<length(TMP);I++){
                         if(TMP0[I][0]==3)                          if(TMP[I][0]==3)
                                 TMP0[I][0]=5$                                  TMP[I][0]=5$
                         else if(TMP0[I][0]==4)                          else if(TMP[I][0]==4)
                                 TMP0[I][0]=6$                                  TMP[I][0]=6$
                   }
   
                 TMP0=map(vtol,TMP0)$                  TMP=map(vtol,TMP)$
   
                 RET=append(RET,TMP0)$                  RET=append(RET,TMP)$
         }          }
   
         return RET$          return RET$
 }  }
   
 end$  end$
   
   

Legend:
Removed from v.1.21  
changed lines
  Added in v.1.38

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>