=================================================================== RCS file: /home/cvs/OpenXM_contrib2/asir2000/lib/sp,v retrieving revision 1.2 retrieving revision 1.6 diff -u -p -r1.2 -r1.6 --- OpenXM_contrib2/asir2000/lib/sp 2000/03/10 07:12:06 1.2 +++ OpenXM_contrib2/asir2000/lib/sp 2000/04/20 02:30:35 1.6 @@ -1,10 +1,11 @@ -/* $OpenXM: OpenXM_contrib2/asir2000/lib/sp,v 1.1.1.1 1999/12/03 07:39:11 noro Exp $ */ +/* $OpenXM$ */ /* sp : functions related to algebraic number fields Revision History: - 99/08/24 noro modified for 1999 release version + 2000/03/10 noro fixed several bugs around gathering algebraic numbers + 1999/08/24 noro modified for 1999 release version */ #include "defs.h" @@ -37,6 +38,68 @@ def sp(P) L = aflist(append(H,append([X-A,R],cdr(T))),AL); } } +} + +/* + Input: + F=F(x,a1,...,an) + DL = [[an,dn(an,...,a1)],...,[a2,d2(a2,a1)],[a1,d1(a1)]] + 'ai' denotes a root of di(t). + Output: + irreducible factorization of F over Q(a1,...,an) + [[F1(x,a1,...,an),e1],...,[Fk(x,a1,...,an),ek]] + 'ej' denotes the multiplicity of Fj. +*/ + +def af_noalg(F,DL) +{ + DL = reverse(DL); + N = length(DL); + Tab = newvect(N); + /* Tab = [[a1,r1],...]; ri is a root of di(t,r(i-1),...,r1). */ + AL = []; + for ( I = 0; I < N; I++ ) { + T = DL[I]; + for ( J = 0, DP = T[1]; J < I; J++ ) + DP = subst(DP,Tab[J][0],Tab[J][1]); + B = newalg(DP); + Tab[I] = [T[0],B]; + F = subst(F,T[0],B); + AL = cons(B,AL); + } + FL = af(F,AL); + for ( T = FL, R = []; T != []; T = cdr(T) ) + R = cons([conv_noalg(T[0][0],Tab),T[0][1]],R); + return reverse(R); +} + +/* + Input: + F=F(x) univariate polynomial over the rationals + Output: + [FL,DL] + DL = [[an,dn(an,...,a1)],...,[a2,d2(a2,a1)],[a1,d1(a1)]] + 'ai' denotes a root of di(t). + FL = [F1,F2,...] + irreducible factors of F over Q(a1,...,an) +*/ + +def sp_noalg(F) +{ + L = sp(F); + FL = map(algptorat,L[0]); + for ( T = L[1], DL = []; T != []; T = cdr(T) ) + DL = cons([algtorat(T[0][0]),T[0][1]],DL); + return [FL,reverse(DL)]; +} + +def conv_noalg(F,Tab) +{ + N = size(Tab)[0]; + F = algptorat(F); + for ( I = N-1; I >= 0; I-- ) + F = subst(F,algtorat(Tab[I][1]),Tab[I][0]); + return F; } def aflist(L,AL)