version 1.8, 2000/08/22 05:04:23 |
version 1.18, 2018/04/06 07:40:44 |
|
|
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* |
* |
* $OpenXM: OpenXM_contrib2/asir2000/lib/sp,v 1.7 2000/08/21 08:31:43 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/sp,v 1.17 2016/02/04 04:17:21 noro Exp $ |
*/ |
*/ |
/* |
/* |
sp : functions related to algebraic number fields |
sp : functions related to algebraic number fields |
|
|
Revision History: |
Revision History: |
|
|
|
2001/10/12 noro if USE_PARI_FACTOR is nonzero, pari factor is called |
2000/03/10 noro fixed several bugs around gathering algebraic numbers |
2000/03/10 noro fixed several bugs around gathering algebraic numbers |
1999/08/24 noro modified for 1999 release version |
1999/08/24 noro modified for 1999 release version |
*/ |
*/ |
|
|
#include "defs.h" |
#include "defs.h" |
|
|
extern ASCENT,GCDTIME,UFTIME,RESTIME,SQTIME,PRINT$ |
extern ASCENT,GCDTIME,UFTIME,RESTIME,SQTIME,PRINT$ |
extern Ord$ |
extern SpOrd$ |
|
extern USE_PARI_FACTOR$ |
|
|
|
/* gen_sp can handle non-monic poly */ |
|
|
|
def gen_sp(P) |
|
{ |
|
P = ptozp(P); |
|
V = var(P); |
|
D = deg(P,V); |
|
LC = coef(P,D,V); |
|
F = LC^(D-1)*subst(P,V,V/LC); |
|
/* F must be monic */ |
|
L = sp(F); |
|
return cons(map(subst,car(L),V,LC*V),cdr(L)); |
|
} |
|
|
def sp(P) |
def sp(P) |
{ |
{ |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
|
|
def af(P,AL) |
def af(P,AL) |
{ |
{ |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
|
V = var(P); |
|
LC = coef(P,deg(P,V),V); |
|
if ( ntype(LC) != 1 ) |
|
P = simpalg(1/LC*P); |
S = reverse(asq(P)); |
S = reverse(asq(P)); |
for ( L = []; S != []; S = cdr(S) ) { |
for ( L = []; S != []; S = cdr(S) ) { |
FM = car(S); F = FM[0]; M = FM[1]; |
FM = car(S); F = FM[0]; M = FM[1]; |
Line 211 def af_sp(P,AL,HINT) |
|
Line 231 def af_sp(P,AL,HINT) |
|
{ |
{ |
if ( !P || type(P) == NUM ) |
if ( !P || type(P) == NUM ) |
return [P]; |
return [P]; |
|
V = var(P); |
|
LC = coef(P,deg(P,V),V); |
|
if ( ntype(LC) != 1 ) |
|
P = simpalg(1/LC*P); |
P1 = simpcoef(simpalg(P)); |
P1 = simpcoef(simpalg(P)); |
return af_spmain(P1,AL,1,HINT,P1,[]); |
return af_spmain(P1,AL,1,HINT,P1,[]); |
} |
} |
Line 592 def simpcoef(P) { |
|
Line 616 def simpcoef(P) { |
|
} |
} |
|
|
def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
|
if ( USE_PARI_FACTOR ) |
|
return pari_ufctr(P); |
|
else |
|
return asir_ufctrhint_heuristic(P,HINT,PP,SHIFT); |
|
} |
|
|
|
def pari_ufctr(P) { |
|
F = pari(factor,P); |
|
S = size(F); |
|
for ( I = S[0]-1, R = []; I >= 0; I-- ) |
|
R = cons(vtol(F[I]),R); |
|
return cons([1,1],R); |
|
} |
|
|
|
def asir_ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
V = var(P); D = deg(P,V); |
V = var(P); D = deg(P,V); |
if ( D == HINT ) |
if ( D == HINT ) |
return [[P,1]]; |
return [[P,1]]; |
Line 628 def ufctrhint2(P,HINT,PP,AL) |
|
Line 667 def ufctrhint2(P,HINT,PP,AL) |
|
return [[P,1]]; |
return [[P,1]]; |
if ( AL == [] ) |
if ( AL == [] ) |
return ufctrhint(P,HINT); |
return ufctrhint(P,HINT); |
|
|
|
/* if P != norm(PP) then call the generic ufctrhint() */ |
|
for ( T = AL, E = 1; T != []; T = cdr(T) ) { |
|
D = defpoly(car(T)); E *= deg(D,var(D)); |
|
} |
|
if ( E*deg(PP,var(PP)) != deg(P,var(P)) ) |
|
return ufctrhint(P,HINT); |
|
|
|
/* P = norm(PP) */ |
L = resfctr(algptorat(PP),map(defpoly,AL),map(algtorat,AL),P); |
L = resfctr(algptorat(PP),map(defpoly,AL),map(algtorat,AL),P); |
for ( T = reverse(L[1]), DL = []; T != []; T = cdr(T) ) |
for ( T = reverse(L[1]), DL = []; T != []; T = cdr(T) ) |
DL = cons(deg(car(car(T)),a_),DL); |
DL = cons(deg(car(car(T)),a_),DL); |
Line 772 def norm_ch_lag(V,VM,P,P0) { |
|
Line 820 def norm_ch_lag(V,VM,P,P0) { |
|
|
|
def cr_gcda(P1,P2) |
def cr_gcda(P1,P2) |
{ |
{ |
if ( !(V = var(P1)) || !var(P2) ) |
if ( !P1 ) |
|
return P2; |
|
if ( !P2 ) |
|
return P1; |
|
if ( !var(P1) || !var(P2) ) |
return 1; |
return 1; |
|
V = var(P1); |
EXT = union_sort(getalgtreep(P1),getalgtreep(P2)); |
EXT = union_sort(getalgtreep(P1),getalgtreep(P2)); |
if ( EXT == [] ) |
if ( EXT == [] ) |
return gcd(P1,P2); |
return gcd(P1,P2); |
Line 801 def cr_gcda(P1,P2) |
|
Line 854 def cr_gcda(P1,P2) |
|
break; |
break; |
if ( J != length(DL) ) |
if ( J != length(DL) ) |
continue; |
continue; |
Ord = 2; NOSUGAR = 1; |
SpOrd = 2; NOSUGAR = 1; |
T = ag_mod(G1 % MOD,G2 % MOD,ML,VL,MOD); |
T = ag_mod(G1 % MOD,G2 % MOD,ML,VL,MOD); |
if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
print("."); |
print("."); |
Line 1015 def ag_mod(F1,F2,D,VL,MOD) |
|
Line 1068 def ag_mod(F1,F2,D,VL,MOD) |
|
VL = cons(V,VL); B = append([F1,F2],D); N = length(VL); |
VL = cons(V,VL); B = append([F1,F2],D); N = length(VL); |
while ( 1 ) { |
while ( 1 ) { |
FLAGS = dp_gr_flags(); dp_gr_flags(["Reverse",1,"NoSugar",1]); |
FLAGS = dp_gr_flags(); dp_gr_flags(["Reverse",1,"NoSugar",1]); |
G = dp_gr_mod_main(B,VL,0,MOD,Ord); |
G = dp_gr_mod_main(B,VL,0,MOD,SpOrd); |
dp_gr_flags(FLAGS); |
dp_gr_flags(FLAGS); |
if ( length(G) == 1 ) |
if ( length(G) == 1 ) |
return 1; |
return 1; |
Line 1249 def ag_mod_single6(F1,F2,D,MOD) |
|
Line 1302 def ag_mod_single6(F1,F2,D,MOD) |
|
|
|
def inverse_by_gr_mod(C,D,MOD) |
def inverse_by_gr_mod(C,D,MOD) |
{ |
{ |
Ord = 2; |
SpOrd = 2; |
dp_gr_flags(["NoSugar",1]); |
dp_gr_flags(["NoSugar",1]); |
G = dp_gr_mod_main(cons(x*C-1,D),cons(x,vars(D)),0,MOD,Ord); |
G = dp_gr_mod_main(cons(x*C-1,D),cons(x,vars(D)),0,MOD,SpOrd); |
dp_gr_flags(["NoSugar",0]); |
dp_gr_flags(["NoSugar",0]); |
if ( length(G) == 1 ) |
if ( length(G) == 1 ) |
return 1; |
return 1; |
Line 1310 def resfctr(F,L,V,N) |
|
Line 1363 def resfctr(F,L,V,N) |
|
N = ptozp(N); |
N = ptozp(N); |
V0 = var(N); |
V0 = var(N); |
DN = diff(N,V0); |
DN = diff(N,V0); |
for ( I = 0, J = 2, Len = deg(N,V0)+1; I < 5; J++ ) { |
LC = coef(N,deg(N,V0),V0); |
M = prime(J); |
LCD = coef(DN,deg(DN,V0),V0); |
G = gcd(N,DN,M); |
J = 2; |
if ( !deg(G,V0) ) { |
while ( 1 ) { |
I++; |
Len = deg(N,V0)+1; |
T = nfctr_mod(N,M); |
for ( I = 0; I < 5; J++ ) { |
if ( T < Len ) { |
M = prime(J); |
Len = T; M0 = M; |
if ( !(LC%M) || !(LCD%M)) |
} |
continue; |
} |
G = gcd(N,DN,M); |
} |
if ( !deg(G,V0) ) { |
S = spm(L,V,M0); |
I++; |
|
T = nfctr_mod(N,M); |
|
if ( T < Len ) { |
|
Len = T; M0 = M; |
|
} |
|
} |
|
} |
|
S = spm(L,V,M0); |
|
if ( S ) break; |
|
} |
T = resfctr_mod(F,S,M0); |
T = resfctr_mod(F,S,M0); |
return [T,S,M0]; |
return [T,S,M0]; |
} |
} |
Line 1335 def resfctr_mod(F,L,M) |
|
Line 1397 def resfctr_mod(F,L,M) |
|
C = res(var(MP),B,MP) % M; |
C = res(var(MP),B,MP) % M; |
R = cons(flatten(cdr(modfctr(C,M))),R); |
R = cons(flatten(cdr(modfctr(C,M))),R); |
} |
} |
return R; |
return reverse(R); |
} |
} |
|
|
def flatten(L) |
def flatten(L) |
|
|
U = modfctr(car(L),M); |
U = modfctr(car(L),M); |
for ( T = cdr(U), R = []; T != []; T = cdr(T) ) { |
for ( T = cdr(U), R = []; T != []; T = cdr(T) ) { |
S = car(T); |
S = car(T); |
|
if ( S[1] > 1 ) return 0; |
R = cons([subst(S[0],var(S[0]),a_),[var(S[0]),a_]],R); |
R = cons([subst(S[0],var(S[0]),a_),[var(S[0]),a_]],R); |
} |
} |
return R; |
return R; |
} |
} |
L1 = spm(cdr(L),cdr(V),M); |
L1 = spm(cdr(L),cdr(V),M); |
|
if ( !L1 ) return 0; |
F0 = car(L); V0 = car(V); VR = cdr(V); |
F0 = car(L); V0 = car(V); VR = cdr(V); |
for ( T = L1, R = []; T != []; T = cdr(T) ) { |
for ( T = L1, R = []; T != []; T = cdr(T) ) { |
S = car(T); |
S = car(T); |
|
|
U = fctr_mod(F1,V0,S[0],M); |
U = fctr_mod(F1,V0,S[0],M); |
VS = var(S[0]); |
VS = var(S[0]); |
for ( W = U; W != []; W = cdr(W) ) { |
for ( W = U; W != []; W = cdr(W) ) { |
|
if ( car(W)[1] > 1 ) return 0; |
A = car(car(W)); |
A = car(car(W)); |
if ( deg(A,V0) == 1 ) { |
if ( deg(A,V0) == 1 ) { |
A = monic_mod(A,V0,S[0],M); |
A = monic_mod(A,V0,S[0],M); |