version 1.1.1.1, 1999/12/03 07:39:11 |
version 1.4, 2000/03/17 01:33:49 |
|
|
/* $OpenXM: OpenXM/src/asir99/lib/sp,v 1.1.1.1 1999/11/10 08:12:30 noro Exp $ */ |
/* $OpenXM: OpenXM_contrib2/asir2000/lib/sp,v 1.3 2000/03/10 09:22:39 noro Exp $ */ |
/* |
/* |
sp : functions related to algebraic number fields |
sp : functions related to algebraic number fields |
|
|
Revision History: |
Revision History: |
|
|
99/08/24 noro modified for 1999 release version |
2000/03/10 noro fixed several bugs |
|
1999/08/24 noro modified for 1999 release version |
*/ |
*/ |
|
|
#include "defs.h" |
#include "defs.h" |
|
|
} |
} |
} |
} |
|
|
|
/* |
|
Input: |
|
F=F(x,a1,...,an) |
|
DL = [[an,dn(an,...,a1)],...,[a2,d2(a2,a1)],[a1,d1(a1)]] |
|
'ai' denotes a root of di(t). |
|
Output: |
|
irreducible factorization of F over Q(a1,...,an) |
|
[[F1(x,a1,...,an),e1],...,[Fk(x,a1,...,an),ek]] |
|
'ej' denotes the multiplicity of Fj. |
|
*/ |
|
|
|
def af_noalg(F,DL) |
|
{ |
|
DL = reverse(DL); |
|
N = length(DL); |
|
Tab = newvect(N); |
|
/* Tab = [[a1,r1],...]; ri is a root of di(t,r(i-1),...,r1). */ |
|
AL = []; |
|
for ( I = 0; I < N; I++ ) { |
|
T = DL[I]; |
|
for ( J = 0, DP = T[1]; J < I; J++ ) |
|
DP = subst(DP,Tab[J][0],Tab[J][1]); |
|
B = newalg(DP); |
|
Tab[I] = [T[0],B]; |
|
F = subst(F,T[0],B); |
|
AL = cons(B,AL); |
|
} |
|
FL = af(F,AL); |
|
for ( T = FL, R = []; T != []; T = cdr(T) ) |
|
R = cons([conv_noalg(T[0][0],Tab),T[0][1]],R); |
|
return reverse(R); |
|
} |
|
|
|
/* |
|
Input: |
|
F=F(x) univariate polynomial over the rationals |
|
Output: |
|
[FL,DL] |
|
DL = [[an,dn(an,...,a1)],...,[a2,d2(a2,a1)],[a1,d1(a1)]] |
|
'ai' denotes a root of di(t). |
|
FL = [F1,F2,...] |
|
irreducible factors of F over Q(a1,...,an) |
|
*/ |
|
|
|
def sp_noalg(F) |
|
{ |
|
L = sp(F); |
|
FL = map(algptorat,L[0]); |
|
for ( T = L[1], DL = []; T != []; T = cdr(T) ) |
|
DL = cons([algtorat(T[0][0]),T[0][1]],DL); |
|
return [FL,reverse(DL)]; |
|
} |
|
|
|
def conv_noalg(F,Tab) |
|
{ |
|
N = size(Tab)[0]; |
|
F = algptorat(F); |
|
for ( I = N-1; I >= 0; I-- ) |
|
F = subst(F,algtorat(Tab[I][1]),Tab[I][0]); |
|
return F; |
|
} |
|
|
def aflist(L,AL) |
def aflist(L,AL) |
{ |
{ |
for ( DC = []; L != []; L = cdr(L) ) { |
for ( DC = []; L != []; L = cdr(L) ) { |
|
|
def af(P,AL) |
def af(P,AL) |
{ |
{ |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
S = reverse(asq(P,AL)); |
S = reverse(asq(P)); |
for ( L = []; S != []; S = cdr(S) ) { |
for ( L = []; S != []; S = cdr(S) ) { |
FM = car(S); F = FM[0]; M = FM[1]; |
FM = car(S); F = FM[0]; M = FM[1]; |
G = af_sp(F,AL,1); |
G = af_sp(F,AL,1); |
Line 124 def af_spmain(P,AL,INIT,HINT,PP,SHIFT) |
|
Line 187 def af_spmain(P,AL,INIT,HINT,PP,SHIFT) |
|
N = simpcoef(sp_norm(A0,V,subst(P,V,V-INIT*A0),AL)); |
N = simpcoef(sp_norm(A0,V,subst(P,V,V-INIT*A0),AL)); |
RESTIME+=time()[0]-TTT; |
RESTIME+=time()[0]-TTT; |
TTT = time()[0]; |
TTT = time()[0]; |
DCSQ = sortfs(asq(N,AL)); |
DCSQ = sortfs(asq(N)); |
SQTIME+=time()[0]-TTT; |
SQTIME+=time()[0]-TTT; |
for ( G = P, A = V+INIT*A0, DCR = []; DCSQ != []; DCSQ = cdr(DCSQ) ) { |
for ( G = P, A = V+INIT*A0, DCR = []; DCSQ != []; DCSQ = cdr(DCSQ) ) { |
C = TT(DCSQ); D = TS(DCSQ); |
C = TT(DCSQ); D = TS(DCSQ); |
Line 142 def af_spmain(P,AL,INIT,HINT,PP,SHIFT) |
|
Line 205 def af_spmain(P,AL,INIT,HINT,PP,SHIFT) |
|
else { |
else { |
S = subst(car(DCT),V,A); |
S = subst(car(DCT),V,A); |
if ( pra(G,S,AL) ) |
if ( pra(G,S,AL) ) |
U = cr_gcda(S,G,AL); |
U = cr_gcda(S,G); |
else |
else |
U = S; |
U = S; |
} |
} |
Line 270 def getalgp(P) { |
|
Line 333 def getalgp(P) { |
|
else { |
else { |
for ( V = var(P), I = deg(P,V), T = []; I >= 0; I-- ) |
for ( V = var(P), I = deg(P,V), T = []; I >= 0; I-- ) |
if ( C = coef(P,I) ) |
if ( C = coef(P,I) ) |
T = union(T,getalgp(C)); |
T = union_sort(T,getalgp(C)); |
return T; |
return T; |
} |
} |
} |
} |
|
|
def union(A,B) |
def getalgtreep(P) { |
{ |
if ( type(P) <= 1 ) |
for ( T = B; T != []; T = cdr(T) ) |
return getalgtree(P); |
A = union1(A,car(T)); |
else { |
return A; |
for ( V = var(P), I = deg(P,V), T = []; I >= 0; I-- ) |
|
if ( C = coef(P,I) ) |
|
T = union_sort(T,getalgtreep(C)); |
|
return T; |
|
} |
} |
} |
|
|
def union1(A,E) |
/* C = union of A and B; A and B is sorted. C should also be sorted. */ |
|
|
|
def union_sort(A,B) |
{ |
{ |
if ( A == [] ) |
if ( A == [] ) |
return [E]; |
return B; |
else if ( car(A) == E ) |
else if ( B == [] ) |
return A; |
return A; |
else |
else { |
return cons(car(A),union1(cdr(A),E)); |
A0 = car(A); |
|
B0 = car(B); |
|
if ( A0 == B0 ) |
|
return cons(A0,union_sort(cdr(A),cdr(B))); |
|
else if ( A0 > B0 ) |
|
return cons(A0,union_sort(cdr(A),B)); |
|
else |
|
return cons(B0,union_sort(A,cdr(B))); |
|
} |
} |
} |
|
|
def invalgp(A) |
def invalgp(A) |
|
|
|
|
def pdiva(P1,P2) |
def pdiva(P1,P2) |
{ |
{ |
A = union(getalgp(P1),getalgp(P2)); |
A = union_sort(getalgp(P1),getalgp(P2)); |
P1 = algptorat(P1); P2 = algptorat(P2); |
P1 = algptorat(P1); P2 = algptorat(P2); |
return simpalg(rattoalgp(sdiv(P1*LCOEF(P2)^(DEG(P1)-DEG(P2)+1),P2),A)); |
return simpalg(rattoalgp(sdiv(P1*LCOEF(P2)^(DEG(P1)-DEG(P2)+1),P2),A)); |
} |
} |
|
|
else if ( (type(P1) != POLY) || (deg(P1,var(P1)) < deg(P2,var(P1))) ) |
else if ( (type(P1) != POLY) || (deg(P1,var(P1)) < deg(P2,var(P1))) ) |
return [0,P1]; |
return [0,P1]; |
else { |
else { |
A = union(getalgp(P1),getalgp(P2)); |
A = union_sort(getalgp(P1),getalgp(P2)); |
P1 = algptorat(P1); P2 = algptorat(P2); |
P1 = algptorat(P1); P2 = algptorat(P2); |
L = sqr(P1*LCOEF(P2)^(DEG(P1)-DEG(P2)+1),P2); |
L = sqr(P1*LCOEF(P2)^(DEG(P1)-DEG(P2)+1),P2); |
return [simpalg(rattoalgp(L[0],A)),simpalg(rattoalgp(L[1],A))]; |
return [simpalg(rattoalgp(L[0],A)),simpalg(rattoalgp(L[1],A))]; |
Line 410 def sort_alg(VL) |
|
Line 487 def sort_alg(VL) |
|
return L; |
return L; |
} |
} |
|
|
def asq(P,AL) |
def asq(P) |
{ |
{ |
P = simpalg(P); |
P = simpalg(P); |
if ( type(P) == NUM ) |
if ( type(P) == NUM ) |
|
|
if ( type(F) == NUM ) |
if ( type(F) == NUM ) |
break; |
break; |
F1 = diff(F,V); |
F1 = diff(F,V); |
GCD = cr_gcda(F,F1,AL); |
GCD = cr_gcda(F,F1); |
FLAT = pdiva(F,GCD); |
FLAT = pdiva(F,GCD); |
if ( type(GCD) == NUM ) { |
if ( type(GCD) == NUM ) { |
A[I] = F; B[I] = 1; |
A[I] = F; B[I] = 1; |
Line 479 def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
|
Line 556 def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
|
G = igcd(G,DT=deg(T,V)); |
G = igcd(G,DT=deg(T,V)); |
if ( G == 1 ) { |
if ( G == 1 ) { |
if ( K*deg(PPP,V) != deg(P,V) ) |
if ( K*deg(PPP,V) != deg(P,V) ) |
PPP = cr_gcda(PPP,P,AL); |
PPP = cr_gcda(PPP,P); |
return ufctrhint2(P,HINT,PPP,AL); |
return ufctrhint2(P,HINT,PPP,AL); |
} else { |
} else { |
for ( S = 0, T = P; T; T -= coef(T,DT)*V^DT ) { |
for ( S = 0, T = P; T; T -= coef(T,DT)*V^DT ) { |
Line 489 def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
|
Line 566 def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
|
L = fctr(S); |
L = fctr(S); |
for ( DC = [car(L)], L = cdr(L); L != []; L = cdr(L) ) { |
for ( DC = [car(L)], L = cdr(L); L != []; L = cdr(L) ) { |
H = subst(car(car(L)),V,V^G); |
H = subst(car(car(L)),V,V^G); |
HH = cr_gcda(PPP,H,AL); |
HH = cr_gcda(PPP,H); |
T = ufctrhint2(H,HINT,HH,AL); |
T = ufctrhint2(H,HINT,HH,AL); |
DC = append(DC,T); |
DC = append(DC,T); |
} |
} |
Line 645 def norm_ch_lag(V,VM,P,P0) { |
|
Line 722 def norm_ch_lag(V,VM,P,P0) { |
|
return S; |
return S; |
} |
} |
|
|
def cr_gcda(P1,P2,EXT) |
def cr_gcda(P1,P2) |
{ |
{ |
if ( !(V = var(P1)) || !var(P2) ) |
if ( !(V = var(P1)) || !var(P2) ) |
return 1; |
return 1; |
AL = union(getalgp(P1),getalgp(P2)); |
EXT = union_sort(getalgtreep(P1),getalgtreep(P2)); |
if ( AL == [] ) |
if ( EXT == [] ) |
return gcd(P1,P2); |
return gcd(P1,P2); |
T = newvect(length(EXT)); |
|
for ( TAL = AL; TAL != []; TAL = cdr(TAL) ) { |
|
A = getalg(car(TAL)); |
|
for ( TA = A; TA != []; TA = cdr(TA) ) { |
|
B = car(TA); |
|
for ( TEXT = EXT, I = 0; TEXT != []; TEXT = cdr(TEXT), I++ ) |
|
if ( car(TEXT) == B ) |
|
T[I] = B; |
|
} |
|
} |
|
for ( I = length(EXT)-1, S = []; I >= 0; I-- ) |
|
if ( T[I] ) |
|
S = cons(T[I],S); |
|
EXT = S; |
|
NEXT = length(EXT); |
NEXT = length(EXT); |
if ( deg(P1,V) < deg(P2,V) ) { |
if ( deg(P1,V) < deg(P2,V) ) { |
T = P1; P1 = P2; P2 = T; |
T = P1; P1 = P2; P2 = T; |
|
|
if ( E == car(L) ) |
if ( E == car(L) ) |
return 1; |
return 1; |
return 0; |
return 0; |
} |
|
|
|
def getallalg(A) |
|
{ |
|
T = cdr(vars(defpoly(A))); |
|
if ( T == [] ) |
|
return [A]; |
|
else { |
|
for ( S = [A]; T != []; T = cdr(T) ) |
|
S = union(S,getallalg(rattoalg(car(T)))); |
|
return S; |
|
} |
|
} |
} |
|
|
def discr(P) { |
def discr(P) { |