| version 1.1.1.1, 1999/12/03 07:39:11 |
version 1.19, 2018/04/09 04:07:27 |
|
|
| /* $OpenXM: OpenXM/src/asir99/lib/sp,v 1.1.1.1 1999/11/10 08:12:30 noro Exp $ */ |
/* |
| |
* Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED |
| |
* All rights reserved. |
| |
* |
| |
* FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, |
| |
* non-exclusive and royalty-free license to use, copy, modify and |
| |
* redistribute, solely for non-commercial and non-profit purposes, the |
| |
* computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and |
| |
* conditions of this Agreement. For the avoidance of doubt, you acquire |
| |
* only a limited right to use the SOFTWARE hereunder, and FLL or any |
| |
* third party developer retains all rights, including but not limited to |
| |
* copyrights, in and to the SOFTWARE. |
| |
* |
| |
* (1) FLL does not grant you a license in any way for commercial |
| |
* purposes. You may use the SOFTWARE only for non-commercial and |
| |
* non-profit purposes only, such as academic, research and internal |
| |
* business use. |
| |
* (2) The SOFTWARE is protected by the Copyright Law of Japan and |
| |
* international copyright treaties. If you make copies of the SOFTWARE, |
| |
* with or without modification, as permitted hereunder, you shall affix |
| |
* to all such copies of the SOFTWARE the above copyright notice. |
| |
* (3) An explicit reference to this SOFTWARE and its copyright owner |
| |
* shall be made on your publication or presentation in any form of the |
| |
* results obtained by use of the SOFTWARE. |
| |
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
| |
* e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification |
| |
* for such modification or the source code of the modified part of the |
| |
* SOFTWARE. |
| |
* |
| |
* THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL |
| |
* MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND |
| |
* EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS |
| |
* FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' |
| |
* RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY |
| |
* MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. |
| |
* UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, |
| |
* OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY |
| |
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL |
| |
* DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES |
| |
* ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES |
| |
* FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY |
| |
* DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF |
| |
* SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART |
| |
* OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY |
| |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| |
* |
| |
* $OpenXM: OpenXM_contrib2/asir2000/lib/sp,v 1.18 2018/04/06 07:40:44 noro Exp $ |
| |
*/ |
| /* |
/* |
| sp : functions related to algebraic number fields |
sp : functions related to algebraic number fields |
| |
|
| Revision History: |
Revision History: |
| |
|
| 99/08/24 noro modified for 1999 release version |
2001/10/12 noro if USE_PARI_FACTOR is nonzero, pari factor is called |
| |
2000/03/10 noro fixed several bugs around gathering algebraic numbers |
| |
1999/08/24 noro modified for 1999 release version |
| */ |
*/ |
| |
|
| #include "defs.h" |
#include "defs.h" |
| |
|
| extern ASCENT,GCDTIME,UFTIME,RESTIME,SQTIME,PRINT$ |
extern ASCENT,GCDTIME,UFTIME,RESTIME,SQTIME,PRINT$ |
| extern Ord$ |
extern SpOrd$ |
| |
extern USE_PARI_FACTOR$ |
| |
|
| |
/* gen_sp can handle non-monic poly */ |
| |
|
| |
def gen_sp(P) |
| |
{ |
| |
P = ptozp(P); |
| |
V = var(P); |
| |
D = deg(P,V); |
| |
LC = coef(P,D,V); |
| |
F = LC^(D-1)*subst(P,V,V/LC); |
| |
/* F must be monic */ |
| |
L = sp(F); |
| |
return cons(map(subst,car(L),V,LC*V),cdr(L)); |
| |
} |
| |
|
| def sp(P) |
def sp(P) |
| { |
{ |
| RESTIME=UFTIME=GCDTIME=SQTIME=0; |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
|
|
| } |
} |
| } |
} |
| |
|
| |
/* |
| |
Input: |
| |
F=F(x,a1,...,an) |
| |
DL = [[an,dn(an,...,a1)],...,[a2,d2(a2,a1)],[a1,d1(a1)]] |
| |
'ai' denotes a root of di(t). |
| |
Output: |
| |
irreducible factorization of F over Q(a1,...,an) |
| |
[[F1(x,a1,...,an),e1],...,[Fk(x,a1,...,an),ek]] |
| |
'ej' denotes the multiplicity of Fj. |
| |
*/ |
| |
|
| |
def af_noalg(F,DL) |
| |
{ |
| |
DL = reverse(DL); |
| |
N = length(DL); |
| |
Tab = newvect(N); |
| |
/* Tab = [[a1,r1],...]; ri is a root of di(t,r(i-1),...,r1). */ |
| |
AL = []; |
| |
for ( I = 0; I < N; I++ ) { |
| |
T = DL[I]; |
| |
for ( J = 0, DP = T[1]; J < I; J++ ) |
| |
DP = subst(DP,Tab[J][0],Tab[J][1]); |
| |
B = newalg(DP); |
| |
Tab[I] = [T[0],B]; |
| |
F = subst(F,T[0],B); |
| |
AL = cons(B,AL); |
| |
} |
| |
FL = af(F,AL); |
| |
for ( T = FL, R = []; T != []; T = cdr(T) ) |
| |
R = cons([conv_noalg(T[0][0],Tab),T[0][1]],R); |
| |
return reverse(R); |
| |
} |
| |
|
| |
/* |
| |
Input: |
| |
F=F(x) univariate polynomial over the rationals |
| |
Output: |
| |
[FL,DL] |
| |
DL = [[an,dn(an,...,a1)],...,[a2,d2(a2,a1)],[a1,d1(a1)]] |
| |
'ai' denotes a root of di(t). |
| |
FL = [F1,F2,...] |
| |
irreducible factors of F over Q(a1,...,an) |
| |
*/ |
| |
|
| |
def sp_noalg(F) |
| |
{ |
| |
L = sp(F); |
| |
FL = map(algptorat,L[0]); |
| |
for ( T = L[1], DL = []; T != []; T = cdr(T) ) |
| |
DL = cons([algtorat(T[0][0]),T[0][1]],DL); |
| |
return [FL,reverse(DL)]; |
| |
} |
| |
|
| |
def conv_noalg(F,Tab) |
| |
{ |
| |
N = size(Tab)[0]; |
| |
F = algptorat(F); |
| |
for ( I = N-1; I >= 0; I-- ) |
| |
F = subst(F,algtorat(Tab[I][1]),Tab[I][0]); |
| |
return F; |
| |
} |
| |
|
| def aflist(L,AL) |
def aflist(L,AL) |
| { |
{ |
| for ( DC = []; L != []; L = cdr(L) ) { |
for ( DC = []; L != []; L = cdr(L) ) { |
|
|
| def af(P,AL) |
def af(P,AL) |
| { |
{ |
| RESTIME=UFTIME=GCDTIME=SQTIME=0; |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
| S = reverse(asq(P,AL)); |
V = var(P); |
| |
LC = coef(P,deg(P,V),V); |
| |
if ( ntype(LC) != 1 ) |
| |
P = simpalg(1/LC*P); |
| |
S = reverse(asq(P)); |
| for ( L = []; S != []; S = cdr(S) ) { |
for ( L = []; S != []; S = cdr(S) ) { |
| FM = car(S); F = FM[0]; M = FM[1]; |
FM = car(S); F = FM[0]; M = FM[1]; |
| G = af_sp(F,AL,1); |
G = af_sp(F,AL,1); |
| Line 100 def af_sp(P,AL,HINT) |
|
| Line 231 def af_sp(P,AL,HINT) |
|
| { |
{ |
| if ( !P || type(P) == NUM ) |
if ( !P || type(P) == NUM ) |
| return [P]; |
return [P]; |
| |
V = var(P); |
| |
LC = coef(P,deg(P,V),V); |
| |
if ( ntype(LC) != 1 ) |
| |
P = simpalg(1/LC*P); |
| P1 = simpcoef(simpalg(P)); |
P1 = simpcoef(simpalg(P)); |
| return af_spmain(P1,AL,1,HINT,P1,[]); |
return af_spmain(P1,AL,1,HINT,P1,[]); |
| } |
} |
| Line 124 def af_spmain(P,AL,INIT,HINT,PP,SHIFT) |
|
| Line 259 def af_spmain(P,AL,INIT,HINT,PP,SHIFT) |
|
| N = simpcoef(sp_norm(A0,V,subst(P,V,V-INIT*A0),AL)); |
N = simpcoef(sp_norm(A0,V,subst(P,V,V-INIT*A0),AL)); |
| RESTIME+=time()[0]-TTT; |
RESTIME+=time()[0]-TTT; |
| TTT = time()[0]; |
TTT = time()[0]; |
| DCSQ = sortfs(asq(N,AL)); |
DCSQ = sortfs(asq(N)); |
| SQTIME+=time()[0]-TTT; |
SQTIME+=time()[0]-TTT; |
| for ( G = P, A = V+INIT*A0, DCR = []; DCSQ != []; DCSQ = cdr(DCSQ) ) { |
for ( G = P, A = V+INIT*A0, DCR = []; DCSQ != []; DCSQ = cdr(DCSQ) ) { |
| C = TT(DCSQ); D = TS(DCSQ); |
C = TT(DCSQ); D = TS(DCSQ); |
| Line 142 def af_spmain(P,AL,INIT,HINT,PP,SHIFT) |
|
| Line 277 def af_spmain(P,AL,INIT,HINT,PP,SHIFT) |
|
| else { |
else { |
| S = subst(car(DCT),V,A); |
S = subst(car(DCT),V,A); |
| if ( pra(G,S,AL) ) |
if ( pra(G,S,AL) ) |
| U = cr_gcda(S,G,AL); |
U = cr_gcda(S,G); |
| else |
else |
| U = S; |
U = S; |
| } |
} |
| Line 270 def getalgp(P) { |
|
| Line 405 def getalgp(P) { |
|
| else { |
else { |
| for ( V = var(P), I = deg(P,V), T = []; I >= 0; I-- ) |
for ( V = var(P), I = deg(P,V), T = []; I >= 0; I-- ) |
| if ( C = coef(P,I) ) |
if ( C = coef(P,I) ) |
| T = union(T,getalgp(C)); |
T = union_sort(T,getalgp(C)); |
| return T; |
return T; |
| } |
} |
| } |
} |
| |
|
| def union(A,B) |
def getalgtreep(P) { |
| { |
if ( type(P) <= 1 ) |
| for ( T = B; T != []; T = cdr(T) ) |
return getalgtree(P); |
| A = union1(A,car(T)); |
else { |
| return A; |
for ( V = var(P), I = deg(P,V), T = []; I >= 0; I-- ) |
| |
if ( C = coef(P,I) ) |
| |
T = union_sort(T,getalgtreep(C)); |
| |
return T; |
| |
} |
| } |
} |
| |
|
| def union1(A,E) |
/* C = union of A and B; A and B is sorted. C should also be sorted. */ |
| |
|
| |
def union_sort(A,B) |
| { |
{ |
| if ( A == [] ) |
if ( A == [] ) |
| return [E]; |
return B; |
| else if ( car(A) == E ) |
else if ( B == [] ) |
| return A; |
return A; |
| else |
else { |
| return cons(car(A),union1(cdr(A),E)); |
A0 = car(A); |
| |
B0 = car(B); |
| |
if ( A0 == B0 ) |
| |
return cons(A0,union_sort(cdr(A),cdr(B))); |
| |
else if ( A0 > B0 ) |
| |
return cons(A0,union_sort(cdr(A),B)); |
| |
else |
| |
return cons(B0,union_sort(A,cdr(B))); |
| |
} |
| } |
} |
| |
|
| def invalgp(A) |
def invalgp(A) |
|
|
| |
|
| def pdiva(P1,P2) |
def pdiva(P1,P2) |
| { |
{ |
| A = union(getalgp(P1),getalgp(P2)); |
A = union_sort(getalgp(P1),getalgp(P2)); |
| P1 = algptorat(P1); P2 = algptorat(P2); |
P1 = algptorat(P1); P2 = algptorat(P2); |
| return simpalg(rattoalgp(sdiv(P1*LCOEF(P2)^(DEG(P1)-DEG(P2)+1),P2),A)); |
return simpalg(rattoalgp(sdiv(P1*LCOEF(P2)^(DEG(P1)-DEG(P2)+1),P2),A)); |
| } |
} |
|
|
| else if ( (type(P1) != POLY) || (deg(P1,var(P1)) < deg(P2,var(P1))) ) |
else if ( (type(P1) != POLY) || (deg(P1,var(P1)) < deg(P2,var(P1))) ) |
| return [0,P1]; |
return [0,P1]; |
| else { |
else { |
| A = union(getalgp(P1),getalgp(P2)); |
A = union_sort(getalgp(P1),getalgp(P2)); |
| P1 = algptorat(P1); P2 = algptorat(P2); |
P1 = algptorat(P1); P2 = algptorat(P2); |
| L = sqr(P1*LCOEF(P2)^(DEG(P1)-DEG(P2)+1),P2); |
L = sqr(P1*LCOEF(P2)^(DEG(P1)-DEG(P2)+1),P2); |
| return [simpalg(rattoalgp(L[0],A)),simpalg(rattoalgp(L[1],A))]; |
return [simpalg(rattoalgp(L[0],A)),simpalg(rattoalgp(L[1],A))]; |
| Line 410 def sort_alg(VL) |
|
| Line 559 def sort_alg(VL) |
|
| return L; |
return L; |
| } |
} |
| |
|
| def asq(P,AL) |
def asq(P) |
| { |
{ |
| P = simpalg(P); |
P = simpalg(P); |
| if ( type(P) == NUM ) |
if ( type(P) == NUM ) |
|
|
| if ( type(F) == NUM ) |
if ( type(F) == NUM ) |
| break; |
break; |
| F1 = diff(F,V); |
F1 = diff(F,V); |
| GCD = cr_gcda(F,F1,AL); |
GCD = cr_gcda(F,F1); |
| FLAT = pdiva(F,GCD); |
FLAT = pdiva(F,GCD); |
| if ( type(GCD) == NUM ) { |
if ( type(GCD) == NUM ) { |
| A[I] = F; B[I] = 1; |
A[I] = F; B[I] = 1; |
| Line 467 def simpcoef(P) { |
|
| Line 616 def simpcoef(P) { |
|
| } |
} |
| |
|
| def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
| |
if ( USE_PARI_FACTOR ) |
| |
return pari_ufctr(P); |
| |
else |
| |
return asir_ufctrhint_heuristic(P,HINT,PP,SHIFT); |
| |
} |
| |
|
| |
def pari_ufctr(P) { |
| |
F = pari(factpol,P); |
| |
S = size(F); |
| |
for ( I = S[0]-1, R = []; I >= 0; I-- ) |
| |
R = cons(vtol(F[I]),R); |
| |
return cons([1,1],R); |
| |
} |
| |
|
| |
def asir_ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
| V = var(P); D = deg(P,V); |
V = var(P); D = deg(P,V); |
| if ( D == HINT ) |
if ( D == HINT ) |
| return [[P,1]]; |
return [[P,1]]; |
| Line 479 def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
|
| Line 643 def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
|
| G = igcd(G,DT=deg(T,V)); |
G = igcd(G,DT=deg(T,V)); |
| if ( G == 1 ) { |
if ( G == 1 ) { |
| if ( K*deg(PPP,V) != deg(P,V) ) |
if ( K*deg(PPP,V) != deg(P,V) ) |
| PPP = cr_gcda(PPP,P,AL); |
PPP = cr_gcda(PPP,P); |
| return ufctrhint2(P,HINT,PPP,AL); |
return ufctrhint2(P,HINT,PPP,AL); |
| } else { |
} else { |
| for ( S = 0, T = P; T; T -= coef(T,DT)*V^DT ) { |
for ( S = 0, T = P; T; T -= coef(T,DT)*V^DT ) { |
| Line 489 def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
|
| Line 653 def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
|
| L = fctr(S); |
L = fctr(S); |
| for ( DC = [car(L)], L = cdr(L); L != []; L = cdr(L) ) { |
for ( DC = [car(L)], L = cdr(L); L != []; L = cdr(L) ) { |
| H = subst(car(car(L)),V,V^G); |
H = subst(car(car(L)),V,V^G); |
| HH = cr_gcda(PPP,H,AL); |
HH = cr_gcda(PPP,H); |
| T = ufctrhint2(H,HINT,HH,AL); |
T = ufctrhint2(H,HINT,HH,AL); |
| DC = append(DC,T); |
DC = append(DC,T); |
| } |
} |
| Line 503 def ufctrhint2(P,HINT,PP,AL) |
|
| Line 667 def ufctrhint2(P,HINT,PP,AL) |
|
| return [[P,1]]; |
return [[P,1]]; |
| if ( AL == [] ) |
if ( AL == [] ) |
| return ufctrhint(P,HINT); |
return ufctrhint(P,HINT); |
| |
|
| |
/* if P != norm(PP) then call the generic ufctrhint() */ |
| |
for ( T = AL, E = 1; T != []; T = cdr(T) ) { |
| |
D = defpoly(car(T)); E *= deg(D,var(D)); |
| |
} |
| |
if ( E*deg(PP,var(PP)) != deg(P,var(P)) ) |
| |
return ufctrhint(P,HINT); |
| |
|
| |
/* P = norm(PP) */ |
| L = resfctr(algptorat(PP),map(defpoly,AL),map(algtorat,AL),P); |
L = resfctr(algptorat(PP),map(defpoly,AL),map(algtorat,AL),P); |
| for ( T = reverse(L[1]), DL = []; T != []; T = cdr(T) ) |
for ( T = reverse(L[1]), DL = []; T != []; T = cdr(T) ) |
| DL = cons(deg(car(car(T)),a_),DL); |
DL = cons(deg(car(car(T)),a_),DL); |
| Line 645 def norm_ch_lag(V,VM,P,P0) { |
|
| Line 818 def norm_ch_lag(V,VM,P,P0) { |
|
| return S; |
return S; |
| } |
} |
| |
|
| def cr_gcda(P1,P2,EXT) |
def cr_gcda(P1,P2) |
| { |
{ |
| if ( !(V = var(P1)) || !var(P2) ) |
if ( !P1 ) |
| |
return P2; |
| |
if ( !P2 ) |
| |
return P1; |
| |
if ( !var(P1) || !var(P2) ) |
| return 1; |
return 1; |
| AL = union(getalgp(P1),getalgp(P2)); |
V = var(P1); |
| if ( AL == [] ) |
EXT = union_sort(getalgtreep(P1),getalgtreep(P2)); |
| |
if ( EXT == [] ) |
| return gcd(P1,P2); |
return gcd(P1,P2); |
| T = newvect(length(EXT)); |
|
| for ( TAL = AL; TAL != []; TAL = cdr(TAL) ) { |
|
| A = getalg(car(TAL)); |
|
| for ( TA = A; TA != []; TA = cdr(TA) ) { |
|
| B = car(TA); |
|
| for ( TEXT = EXT, I = 0; TEXT != []; TEXT = cdr(TEXT), I++ ) |
|
| if ( car(TEXT) == B ) |
|
| T[I] = B; |
|
| } |
|
| } |
|
| for ( I = length(EXT)-1, S = []; I >= 0; I-- ) |
|
| if ( T[I] ) |
|
| S = cons(T[I],S); |
|
| EXT = S; |
|
| NEXT = length(EXT); |
NEXT = length(EXT); |
| if ( deg(P1,V) < deg(P2,V) ) { |
if ( deg(P1,V) < deg(P2,V) ) { |
| T = P1; P1 = P2; P2 = T; |
T = P1; P1 = P2; P2 = T; |
| Line 690 def cr_gcda(P1,P2,EXT) |
|
| Line 854 def cr_gcda(P1,P2,EXT) |
|
| break; |
break; |
| if ( J != length(DL) ) |
if ( J != length(DL) ) |
| continue; |
continue; |
| Ord = 2; NOSUGAR = 1; |
SpOrd = 2; NOSUGAR = 1; |
| T = ag_mod(G1 % MOD,G2 % MOD,ML,VL,MOD); |
T = ag_mod(G1 % MOD,G2 % MOD,ML,VL,MOD); |
| if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
| print("."); |
print("."); |
|
|
| return 0; |
return 0; |
| } |
} |
| |
|
| def getallalg(A) |
|
| { |
|
| T = cdr(vars(defpoly(A))); |
|
| if ( T == [] ) |
|
| return [A]; |
|
| else { |
|
| for ( S = [A]; T != []; T = cdr(T) ) |
|
| S = union(S,getallalg(rattoalg(car(T)))); |
|
| return S; |
|
| } |
|
| } |
|
| |
|
| def discr(P) { |
def discr(P) { |
| V = var(P); |
V = var(P); |
| return res(V,P,diff(P,V)); |
return res(V,P,diff(P,V)); |
| Line 916 def ag_mod(F1,F2,D,VL,MOD) |
|
| Line 1068 def ag_mod(F1,F2,D,VL,MOD) |
|
| VL = cons(V,VL); B = append([F1,F2],D); N = length(VL); |
VL = cons(V,VL); B = append([F1,F2],D); N = length(VL); |
| while ( 1 ) { |
while ( 1 ) { |
| FLAGS = dp_gr_flags(); dp_gr_flags(["Reverse",1,"NoSugar",1]); |
FLAGS = dp_gr_flags(); dp_gr_flags(["Reverse",1,"NoSugar",1]); |
| G = dp_gr_mod_main(B,VL,0,MOD,Ord); |
G = dp_gr_mod_main(B,VL,0,MOD,SpOrd); |
| dp_gr_flags(FLAGS); |
dp_gr_flags(FLAGS); |
| if ( length(G) == 1 ) |
if ( length(G) == 1 ) |
| return 1; |
return 1; |
| Line 1150 def ag_mod_single6(F1,F2,D,MOD) |
|
| Line 1302 def ag_mod_single6(F1,F2,D,MOD) |
|
| |
|
| def inverse_by_gr_mod(C,D,MOD) |
def inverse_by_gr_mod(C,D,MOD) |
| { |
{ |
| Ord = 2; |
SpOrd = 2; |
| dp_gr_flags(["NoSugar",1]); |
dp_gr_flags(["NoSugar",1]); |
| G = dp_gr_mod_main(cons(x*C-1,D),cons(x,vars(D)),0,MOD,Ord); |
G = dp_gr_mod_main(cons(x*C-1,D),cons(x,vars(D)),0,MOD,SpOrd); |
| dp_gr_flags(["NoSugar",0]); |
dp_gr_flags(["NoSugar",0]); |
| if ( length(G) == 1 ) |
if ( length(G) == 1 ) |
| return 1; |
return 1; |
| Line 1211 def resfctr(F,L,V,N) |
|
| Line 1363 def resfctr(F,L,V,N) |
|
| N = ptozp(N); |
N = ptozp(N); |
| V0 = var(N); |
V0 = var(N); |
| DN = diff(N,V0); |
DN = diff(N,V0); |
| for ( I = 0, J = 2, Len = deg(N,V0)+1; I < 5; J++ ) { |
LC = coef(N,deg(N,V0),V0); |
| M = prime(J); |
LCD = coef(DN,deg(DN,V0),V0); |
| G = gcd(N,DN,M); |
J = 2; |
| if ( !deg(G,V0) ) { |
while ( 1 ) { |
| I++; |
Len = deg(N,V0)+1; |
| T = nfctr_mod(N,M); |
for ( I = 0; I < 5; J++ ) { |
| if ( T < Len ) { |
M = prime(J); |
| Len = T; M0 = M; |
if ( !(LC%M) || !(LCD%M)) |
| } |
continue; |
| } |
G = gcd(N,DN,M); |
| } |
if ( !deg(G,V0) ) { |
| S = spm(L,V,M0); |
I++; |
| |
T = nfctr_mod(N,M); |
| |
if ( T < Len ) { |
| |
Len = T; M0 = M; |
| |
} |
| |
} |
| |
} |
| |
S = spm(L,V,M0); |
| |
if ( S ) break; |
| |
} |
| T = resfctr_mod(F,S,M0); |
T = resfctr_mod(F,S,M0); |
| return [T,S,M0]; |
return [T,S,M0]; |
| } |
} |
| Line 1236 def resfctr_mod(F,L,M) |
|
| Line 1397 def resfctr_mod(F,L,M) |
|
| C = res(var(MP),B,MP) % M; |
C = res(var(MP),B,MP) % M; |
| R = cons(flatten(cdr(modfctr(C,M))),R); |
R = cons(flatten(cdr(modfctr(C,M))),R); |
| } |
} |
| return R; |
return reverse(R); |
| } |
} |
| |
|
| def flatten(L) |
def flatten(L) |
|
|
| U = modfctr(car(L),M); |
U = modfctr(car(L),M); |
| for ( T = cdr(U), R = []; T != []; T = cdr(T) ) { |
for ( T = cdr(U), R = []; T != []; T = cdr(T) ) { |
| S = car(T); |
S = car(T); |
| |
if ( S[1] > 1 ) return 0; |
| R = cons([subst(S[0],var(S[0]),a_),[var(S[0]),a_]],R); |
R = cons([subst(S[0],var(S[0]),a_),[var(S[0]),a_]],R); |
| } |
} |
| return R; |
return R; |
| } |
} |
| L1 = spm(cdr(L),cdr(V),M); |
L1 = spm(cdr(L),cdr(V),M); |
| |
if ( !L1 ) return 0; |
| F0 = car(L); V0 = car(V); VR = cdr(V); |
F0 = car(L); V0 = car(V); VR = cdr(V); |
| for ( T = L1, R = []; T != []; T = cdr(T) ) { |
for ( T = L1, R = []; T != []; T = cdr(T) ) { |
| S = car(T); |
S = car(T); |
|
|
| U = fctr_mod(F1,V0,S[0],M); |
U = fctr_mod(F1,V0,S[0],M); |
| VS = var(S[0]); |
VS = var(S[0]); |
| for ( W = U; W != []; W = cdr(W) ) { |
for ( W = U; W != []; W = cdr(W) ) { |
| |
if ( car(W)[1] > 1 ) return 0; |
| A = car(car(W)); |
A = car(car(W)); |
| if ( deg(A,V0) == 1 ) { |
if ( deg(A,V0) == 1 ) { |
| A = monic_mod(A,V0,S[0],M); |
A = monic_mod(A,V0,S[0],M); |