version 1.16, 2010/07/14 04:48:14 |
version 1.18, 2018/04/06 07:40:44 |
|
|
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* |
* |
* $OpenXM: OpenXM_contrib2/asir2000/lib/sp,v 1.15 2006/06/23 08:57:47 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/sp,v 1.17 2016/02/04 04:17:21 noro Exp $ |
*/ |
*/ |
/* |
/* |
sp : functions related to algebraic number fields |
sp : functions related to algebraic number fields |
|
|
def af(P,AL) |
def af(P,AL) |
{ |
{ |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
|
V = var(P); |
|
LC = coef(P,deg(P,V),V); |
|
if ( ntype(LC) != 1 ) |
|
P = simpalg(1/LC*P); |
S = reverse(asq(P)); |
S = reverse(asq(P)); |
for ( L = []; S != []; S = cdr(S) ) { |
for ( L = []; S != []; S = cdr(S) ) { |
FM = car(S); F = FM[0]; M = FM[1]; |
FM = car(S); F = FM[0]; M = FM[1]; |
Line 227 def af_sp(P,AL,HINT) |
|
Line 231 def af_sp(P,AL,HINT) |
|
{ |
{ |
if ( !P || type(P) == NUM ) |
if ( !P || type(P) == NUM ) |
return [P]; |
return [P]; |
|
V = var(P); |
|
LC = coef(P,deg(P,V),V); |
|
if ( ntype(LC) != 1 ) |
|
P = simpalg(1/LC*P); |
P1 = simpcoef(simpalg(P)); |
P1 = simpcoef(simpalg(P)); |
return af_spmain(P1,AL,1,HINT,P1,[]); |
return af_spmain(P1,AL,1,HINT,P1,[]); |
} |
} |
Line 1357 def resfctr(F,L,V,N) |
|
Line 1365 def resfctr(F,L,V,N) |
|
DN = diff(N,V0); |
DN = diff(N,V0); |
LC = coef(N,deg(N,V0),V0); |
LC = coef(N,deg(N,V0),V0); |
LCD = coef(DN,deg(DN,V0),V0); |
LCD = coef(DN,deg(DN,V0),V0); |
for ( I = 0, J = 2, Len = deg(N,V0)+1; I < 5; J++ ) { |
J = 2; |
M = prime(J); |
while ( 1 ) { |
if ( !(LC%M) || !(LCD%M)) |
Len = deg(N,V0)+1; |
continue; |
for ( I = 0; I < 5; J++ ) { |
G = gcd(N,DN,M); |
M = prime(J); |
if ( !deg(G,V0) ) { |
if ( !(LC%M) || !(LCD%M)) |
I++; |
continue; |
T = nfctr_mod(N,M); |
G = gcd(N,DN,M); |
if ( T < Len ) { |
if ( !deg(G,V0) ) { |
Len = T; M0 = M; |
I++; |
} |
T = nfctr_mod(N,M); |
} |
if ( T < Len ) { |
} |
Len = T; M0 = M; |
S = spm(L,V,M0); |
} |
|
} |
|
} |
|
S = spm(L,V,M0); |
|
if ( S ) break; |
|
} |
T = resfctr_mod(F,S,M0); |
T = resfctr_mod(F,S,M0); |
return [T,S,M0]; |
return [T,S,M0]; |
} |
} |
|
|
U = modfctr(car(L),M); |
U = modfctr(car(L),M); |
for ( T = cdr(U), R = []; T != []; T = cdr(T) ) { |
for ( T = cdr(U), R = []; T != []; T = cdr(T) ) { |
S = car(T); |
S = car(T); |
|
if ( S[1] > 1 ) return 0; |
R = cons([subst(S[0],var(S[0]),a_),[var(S[0]),a_]],R); |
R = cons([subst(S[0],var(S[0]),a_),[var(S[0]),a_]],R); |
} |
} |
return R; |
return R; |
} |
} |
L1 = spm(cdr(L),cdr(V),M); |
L1 = spm(cdr(L),cdr(V),M); |
|
if ( !L1 ) return 0; |
F0 = car(L); V0 = car(V); VR = cdr(V); |
F0 = car(L); V0 = car(V); VR = cdr(V); |
for ( T = L1, R = []; T != []; T = cdr(T) ) { |
for ( T = L1, R = []; T != []; T = cdr(T) ) { |
S = car(T); |
S = car(T); |
|
|
U = fctr_mod(F1,V0,S[0],M); |
U = fctr_mod(F1,V0,S[0],M); |
VS = var(S[0]); |
VS = var(S[0]); |
for ( W = U; W != []; W = cdr(W) ) { |
for ( W = U; W != []; W = cdr(W) ) { |
|
if ( car(W)[1] > 1 ) return 0; |
A = car(car(W)); |
A = car(car(W)); |
if ( deg(A,V0) == 1 ) { |
if ( deg(A,V0) == 1 ) { |
A = monic_mod(A,V0,S[0],M); |
A = monic_mod(A,V0,S[0],M); |