version 1.3, 2000/03/10 09:22:39 |
version 1.14, 2005/08/18 23:35:20 |
|
|
/* $OpenXM: OpenXM_contrib2/asir2000/lib/sp,v 1.2 2000/03/10 07:12:06 noro Exp $ */ |
/* |
|
* Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED |
|
* All rights reserved. |
|
* |
|
* FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, |
|
* non-exclusive and royalty-free license to use, copy, modify and |
|
* redistribute, solely for non-commercial and non-profit purposes, the |
|
* computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and |
|
* conditions of this Agreement. For the avoidance of doubt, you acquire |
|
* only a limited right to use the SOFTWARE hereunder, and FLL or any |
|
* third party developer retains all rights, including but not limited to |
|
* copyrights, in and to the SOFTWARE. |
|
* |
|
* (1) FLL does not grant you a license in any way for commercial |
|
* purposes. You may use the SOFTWARE only for non-commercial and |
|
* non-profit purposes only, such as academic, research and internal |
|
* business use. |
|
* (2) The SOFTWARE is protected by the Copyright Law of Japan and |
|
* international copyright treaties. If you make copies of the SOFTWARE, |
|
* with or without modification, as permitted hereunder, you shall affix |
|
* to all such copies of the SOFTWARE the above copyright notice. |
|
* (3) An explicit reference to this SOFTWARE and its copyright owner |
|
* shall be made on your publication or presentation in any form of the |
|
* results obtained by use of the SOFTWARE. |
|
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
|
* e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification |
|
* for such modification or the source code of the modified part of the |
|
* SOFTWARE. |
|
* |
|
* THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL |
|
* MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND |
|
* EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS |
|
* FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' |
|
* RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY |
|
* MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. |
|
* UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, |
|
* OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY |
|
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL |
|
* DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES |
|
* ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES |
|
* FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY |
|
* DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF |
|
* SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART |
|
* OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY |
|
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
|
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
|
* |
|
* $OpenXM: OpenXM_contrib2/asir2000/lib/sp,v 1.13 2004/04/13 07:43:20 noro Exp $ |
|
*/ |
/* |
/* |
sp : functions related to algebraic number fields |
sp : functions related to algebraic number fields |
|
|
Revision History: |
Revision History: |
|
|
2000/03/10 noro fixed several bugs |
2001/10/12 noro if USE_PARI_FACTOR is nonzero, pari factor is called |
|
2000/03/10 noro fixed several bugs around gathering algebraic numbers |
1999/08/24 noro modified for 1999 release version |
1999/08/24 noro modified for 1999 release version |
*/ |
*/ |
|
|
|
|
|
|
extern ASCENT,GCDTIME,UFTIME,RESTIME,SQTIME,PRINT$ |
extern ASCENT,GCDTIME,UFTIME,RESTIME,SQTIME,PRINT$ |
extern Ord$ |
extern Ord$ |
|
extern USE_PARI_FACTOR$ |
|
|
|
/* gen_sp can handle non-monic poly */ |
|
|
|
def gen_sp(P) |
|
{ |
|
P = ptozp(P); |
|
V = var(P); |
|
D = deg(P,V); |
|
LC = coef(P,D,V); |
|
F = LC^(D-1)*subst(P,V,V/LC); |
|
/* F must be monic */ |
|
L = sp(F); |
|
return cons(map(subst,car(L),V,LC*V),cdr(L)); |
|
} |
|
|
def sp(P) |
def sp(P) |
{ |
{ |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
RESTIME=UFTIME=GCDTIME=SQTIME=0; |
|
|
} |
} |
} |
} |
|
|
|
/* |
|
Input: |
|
F=F(x,a1,...,an) |
|
DL = [[an,dn(an,...,a1)],...,[a2,d2(a2,a1)],[a1,d1(a1)]] |
|
'ai' denotes a root of di(t). |
|
Output: |
|
irreducible factorization of F over Q(a1,...,an) |
|
[[F1(x,a1,...,an),e1],...,[Fk(x,a1,...,an),ek]] |
|
'ej' denotes the multiplicity of Fj. |
|
*/ |
|
|
|
def af_noalg(F,DL) |
|
{ |
|
DL = reverse(DL); |
|
N = length(DL); |
|
Tab = newvect(N); |
|
/* Tab = [[a1,r1],...]; ri is a root of di(t,r(i-1),...,r1). */ |
|
AL = []; |
|
for ( I = 0; I < N; I++ ) { |
|
T = DL[I]; |
|
for ( J = 0, DP = T[1]; J < I; J++ ) |
|
DP = subst(DP,Tab[J][0],Tab[J][1]); |
|
B = newalg(DP); |
|
Tab[I] = [T[0],B]; |
|
F = subst(F,T[0],B); |
|
AL = cons(B,AL); |
|
} |
|
FL = af(F,AL); |
|
for ( T = FL, R = []; T != []; T = cdr(T) ) |
|
R = cons([conv_noalg(T[0][0],Tab),T[0][1]],R); |
|
return reverse(R); |
|
} |
|
|
|
/* |
|
Input: |
|
F=F(x) univariate polynomial over the rationals |
|
Output: |
|
[FL,DL] |
|
DL = [[an,dn(an,...,a1)],...,[a2,d2(a2,a1)],[a1,d1(a1)]] |
|
'ai' denotes a root of di(t). |
|
FL = [F1,F2,...] |
|
irreducible factors of F over Q(a1,...,an) |
|
*/ |
|
|
|
def sp_noalg(F) |
|
{ |
|
L = sp(F); |
|
FL = map(algptorat,L[0]); |
|
for ( T = L[1], DL = []; T != []; T = cdr(T) ) |
|
DL = cons([algtorat(T[0][0]),T[0][1]],DL); |
|
return [FL,reverse(DL)]; |
|
} |
|
|
|
def conv_noalg(F,Tab) |
|
{ |
|
N = size(Tab)[0]; |
|
F = algptorat(F); |
|
for ( I = N-1; I >= 0; I-- ) |
|
F = subst(F,algtorat(Tab[I][1]),Tab[I][0]); |
|
return F; |
|
} |
|
|
def aflist(L,AL) |
def aflist(L,AL) |
{ |
{ |
for ( DC = []; L != []; L = cdr(L) ) { |
for ( DC = []; L != []; L = cdr(L) ) { |
Line 482 def simpcoef(P) { |
|
Line 608 def simpcoef(P) { |
|
} |
} |
|
|
def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
def ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
|
if ( USE_PARI_FACTOR ) |
|
return pari_ufctr(P); |
|
else |
|
return asir_ufctrhint_heuristic(P,HINT,PP,SHIFT); |
|
} |
|
|
|
def pari_ufctr(P) { |
|
F = pari(factor,P); |
|
S = size(F); |
|
for ( I = S[0]-1, R = []; I >= 0; I-- ) |
|
R = cons(vtol(F[I]),R); |
|
return cons([1,1],R); |
|
} |
|
|
|
def asir_ufctrhint_heuristic(P,HINT,PP,SHIFT) { |
V = var(P); D = deg(P,V); |
V = var(P); D = deg(P,V); |
if ( D == HINT ) |
if ( D == HINT ) |
return [[P,1]]; |
return [[P,1]]; |
Line 662 def norm_ch_lag(V,VM,P,P0) { |
|
Line 803 def norm_ch_lag(V,VM,P,P0) { |
|
|
|
def cr_gcda(P1,P2) |
def cr_gcda(P1,P2) |
{ |
{ |
if ( !(V = var(P1)) || !var(P2) ) |
if ( !P1 ) |
|
return P2; |
|
if ( !P2 ) |
|
return P1; |
|
if ( !var(P1) || !var(P2) ) |
return 1; |
return 1; |
|
V = var(P1); |
EXT = union_sort(getalgtreep(P1),getalgtreep(P2)); |
EXT = union_sort(getalgtreep(P1),getalgtreep(P2)); |
if ( EXT == [] ) |
if ( EXT == [] ) |
return gcd(P1,P2); |
return gcd(P1,P2); |
Line 1200 def resfctr(F,L,V,N) |
|
Line 1346 def resfctr(F,L,V,N) |
|
N = ptozp(N); |
N = ptozp(N); |
V0 = var(N); |
V0 = var(N); |
DN = diff(N,V0); |
DN = diff(N,V0); |
|
LC = coef(N,deg(N,V0),V0); |
|
LCD = coef(DN,deg(DN,V0),V0); |
for ( I = 0, J = 2, Len = deg(N,V0)+1; I < 5; J++ ) { |
for ( I = 0, J = 2, Len = deg(N,V0)+1; I < 5; J++ ) { |
M = prime(J); |
M = prime(J); |
|
if ( !(LC%M) || !(LCD%M)) |
|
continue; |
G = gcd(N,DN,M); |
G = gcd(N,DN,M); |
if ( !deg(G,V0) ) { |
if ( !deg(G,V0) ) { |
I++; |
I++; |
Line 1225 def resfctr_mod(F,L,M) |
|
Line 1375 def resfctr_mod(F,L,M) |
|
C = res(var(MP),B,MP) % M; |
C = res(var(MP),B,MP) % M; |
R = cons(flatten(cdr(modfctr(C,M))),R); |
R = cons(flatten(cdr(modfctr(C,M))),R); |
} |
} |
return R; |
return reverse(R); |
} |
} |
|
|
def flatten(L) |
def flatten(L) |