| version 1.4, 2003/04/20 08:54:29 |
version 1.10, 2003/05/07 06:26:51 |
|
|
| |
/* $OpenXM: OpenXM_contrib2/asir2000/lib/primdec_mod,v 1.9 2003/04/24 07:54:15 noro Exp $ */ |
| |
|
| extern Hom,GBTime$ |
extern Hom,GBTime$ |
| extern DIVLIST,INTIDEAL,ORIGINAL,ORIGINALDIMENSION,STOP,Trials,REM$ |
extern DIVLIST,INTIDEAL,ORIGINAL,ORIGINALDIMENSION,STOP,Trials,REM$ |
| extern T_GRF,T_INT,T_PD,T_MP$ |
extern T_GRF,T_INT,T_PD,T_MP$ |
| Line 134 def frobeniuskernel_main(P,VSet,WSet) |
|
| Line 136 def frobeniuskernel_main(P,VSet,WSet) |
|
| XSet=append(VSet,WSet); |
XSet=append(VSet,WSet); |
| NewOrder=[[0,length(VSet)],[0,length(WSet)]]; |
NewOrder=[[0,length(VSet)],[0,length(WSet)]]; |
| |
|
| Char=setmod_ff()[0]; |
Char=characteristic_ff(); |
| |
|
| for (I=0;I<NV;I++) |
for (I=0;I<NV;I++) |
| { |
{ |
| Line 168 def frobeniuskernel_main2(P,VSet,WSet) |
|
| Line 170 def frobeniuskernel_main2(P,VSet,WSet) |
|
| XSet=append(VSet,WSet); |
XSet=append(VSet,WSet); |
| NewOrder=[[0,NV],[0,NV]]; |
NewOrder=[[0,NV],[0,NV]]; |
| |
|
| Char=setmod_ff()[0]; |
Char=characteristic_ff(); |
| |
|
| for (I=0;I<NV;I++) |
for (I=0;I<NV;I++) |
| { |
{ |
| Line 216 def frobeniuskernel_main4(P,VSet,WSet) |
|
| Line 218 def frobeniuskernel_main4(P,VSet,WSet) |
|
| XSet=append(VSet,WSet); |
XSet=append(VSet,WSet); |
| NewOrder=[[0,NV],[0,NV]]; |
NewOrder=[[0,NV],[0,NV]]; |
| |
|
| Char=setmod_ff()[0]; |
Char=characteristic_ff(); |
| |
|
| for (I=0;I<NV;I++) |
for (I=0;I<NV;I++) |
| { |
{ |
| Line 279 def frobeniuskernel_main3(P,VSet,WSet) |
|
| Line 281 def frobeniuskernel_main3(P,VSet,WSet) |
|
| |
|
| NewP=coefficientfrobeniuskernel(P); |
NewP=coefficientfrobeniuskernel(P); |
| |
|
| Char=setmod_ff()[0]; |
Char=characteristic_ff(); |
| |
|
| for (I=0;I<NV;I++) |
for (I=0;I<NV;I++) |
| { |
{ |
| Line 342 def coefficientfrobeniuskernel_main(Poly) |
|
| Line 344 def coefficientfrobeniuskernel_main(Poly) |
|
| Vars=vars(Poly); |
Vars=vars(Poly); |
| QP=dp_ptod(Poly,Vars); |
QP=dp_ptod(Poly,Vars); |
| ANS=0; |
ANS=0; |
| FOrd=deg(setmod_ff()[1],x); |
FOrd=extdeg_ff(); |
| Char=setmod_ff()[0]; |
Char=characteristic_ff(); |
| Pow=Char^(FOrd-1); |
Pow=Char^(FOrd-1); |
| |
|
| while(QP !=0 ) |
while(QP !=0 ) |
| Line 1636 def separableclosure(CP,TargetVSet,VSet) |
|
| Line 1638 def separableclosure(CP,TargetVSet,VSet) |
|
| print("This is not a separable ideal, so we make its separable closure.", 2); |
print("This is not a separable ideal, so we make its separable closure.", 2); |
| } |
} |
| WSet=makecounterpart(TargetVSet); |
WSet=makecounterpart(TargetVSet); |
| Char=setmod_ff()[0]; |
Char=characteristic_ff(); |
| |
|
| NewP=CP[0]; |
NewP=CP[0]; |
| EXPVECTOR=newvect(NVSet); |
EXPVECTOR=newvect(NVSet); |
| Line 1692 def convertdivisor(P,TargetVSet,VSet,ExVector) |
|
| Line 1694 def convertdivisor(P,TargetVSet,VSet,ExVector) |
|
| |
|
| NVSet=length(TargetVSet); |
NVSet=length(TargetVSet); |
| WSet=makecounterpart(TargetVSet); |
WSet=makecounterpart(TargetVSet); |
| Char=setmod_ff()[0]; |
Char=characteristic_ff(); |
| Ord=0; |
Ord=0; |
| |
|
| NewP=P; |
NewP=P; |
| Line 2034 def checkseparablepoly(P,V) |
|
| Line 2036 def checkseparablepoly(P,V) |
|
| |
|
| def pdivide(F,V) |
def pdivide(F,V) |
| { |
{ |
| Char=setmod_ff()[0]; |
Char=characteristic_ff(); |
| TestP=P; |
TestP=P; |
| |
|
| Deg=ideg(TestP,V); |
Deg=ideg(TestP,V); |
| Line 2082 def convertsmallfield(PP,VSet,Ord) |
|
| Line 2084 def convertsmallfield(PP,VSet,Ord) |
|
| { |
{ |
| dp_ord(Ord); |
dp_ord(Ord); |
| NVSet=length(VSet); |
NVSet=length(VSet); |
| Char=setmod_ff()[0]; |
Char=characteristic_ff(); |
| ExtDeg=deg(setmod_ff()[1],x); |
ExtDeg=extdeg_ff(); |
| |
|
| NewV=pg; |
NewV=pgpgpgpgpgpgpg; |
| MPP=map(monic_hc,PP,VSet); |
MPP=map(monic_hc,PP,VSet); |
| MPP=map(sfptopsfp,MPP,NewV); |
MPP=map(sfptopsfp,MPP,NewV); |
| |
|
| MinPoly=subst(setmod_ff()[1],x,NewV); |
DefPoly=setmod_ff()[1]; |
| |
/* GF(p) case */ |
| |
if ( !DefPoly ) |
| |
return MPP; |
| |
|
| |
MinPoly=subst(DefPoly,var(DefPoly),NewV); |
| XSet=cons(NewV,VSet); |
XSet=cons(NewV,VSet); |
| |
|
| Ord1=[[0,1],[Ord,NVSet]]; |
Ord1=[[0,1],[Ord,NVSet]]; |
| Line 2109 def checkgaloisorbit(PP,VSet,Ord,Flag) |
|
| Line 2116 def checkgaloisorbit(PP,VSet,Ord,Flag) |
|
| { |
{ |
| NPP=length(PP); |
NPP=length(PP); |
| TmpPP=PP; |
TmpPP=PP; |
| ExtDeg=deg(setmod_ff()[1],x); |
ExtDeg=extdeg_ff(); |
| |
|
| ANS=[]; |
ANS=[]; |
| BNS=[]; |
BNS=[]; |
| Line 2197 def partial_decomp(B,V) |
|
| Line 2204 def partial_decomp(B,V) |
|
| map(ox_cmo_rpc,ParallelMinipoly,"setmod_ff",characteristic_ff(),extdeg_ff()); |
map(ox_cmo_rpc,ParallelMinipoly,"setmod_ff",characteristic_ff(),extdeg_ff()); |
| map(ox_pop_cmo,ParallelMinipoly); |
map(ox_pop_cmo,ParallelMinipoly); |
| } |
} |
| B = map(ptosfp,B); |
B = map(simp_ff,B); |
| B = dp_gr_f_main(B,V,0,0); |
B = dp_gr_f_main(B,V,0,0); |
| R = partial_decomp0(B,V,length(V)-1); |
R = partial_decomp0(B,V,length(V)-1); |
| if ( PartialDecompByLex ) { |
if ( PartialDecompByLex ) { |
| Line 2370 def minipoly_sf_by_buchberger(G,V,O,F,V0,Server) |
|
| Line 2377 def minipoly_sf_by_buchberger(G,V,O,F,V0,Server) |
|
| if ( Server ) |
if ( Server ) |
| ox_sync(0); |
ox_sync(0); |
| Vc = cons(V0,setminus(vars(G),V)); |
Vc = cons(V0,setminus(vars(G),V)); |
| Gf = cons(ptosfp(V0-F),G); |
Gf = cons(simp_ff(V0-F),G); |
| Vf = append(V,Vc); |
Vf = append(V,Vc); |
| Gelim = dp_gr_f_main(Gf,Vf,1,[[0,length(V)],[0,length(Vc)]]); |
Gelim = dp_gr_f_main(Gf,Vf,1,[[0,length(V)],[0,length(Vc)]]); |
| for ( Gc = [], T = Gelim; T != []; T = cdr(T) ) { |
for ( Gc = [], T = Gelim; T != []; T = cdr(T) ) { |
| Line 2405 def minipoly_sf_0dim(G,V,O,F,V0,Server) |
|
| Line 2412 def minipoly_sf_0dim(G,V,O,F,V0,Server) |
|
| for ( I = Len - 1, GI = []; I >= 0; I-- ) |
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
| GI = cons(I,GI); |
GI = cons(I,GI); |
| MB = dp_mbase(HL); DIM = length(MB); UT = newvect(DIM); |
MB = dp_mbase(HL); DIM = length(MB); UT = newvect(DIM); |
| U = dp_ptod(ptosfp(F),V); |
U = dp_ptod(simp_ff(F),V); |
| U = dp_nf_f(GI,U,PS,1); |
U = dp_nf_f(GI,U,PS,1); |
| for ( I = 0; I < DIM; I++ ) |
for ( I = 0; I < DIM; I++ ) |
| UT[I] = [MB[I],dp_nf_f(GI,U*MB[I],PS,1)]; |
UT[I] = [MB[I],dp_nf_f(GI,U*MB[I],PS,1)]; |
| |
|
| T = dp_ptod(ptosfp(1),[V0]); |
T = dp_ptod(simp_ff(1),[V0]); |
| TT = dp_ptod(ptosfp(1),V); |
TT = dp_ptod(simp_ff(1),V); |
| G = H = [[TT,T]]; |
G = H = [[TT,T]]; |
| |
|
| for ( I = 1; ; I++ ) { |
for ( I = 1; ; I++ ) { |
| if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
| print(".",2); |
print(".",2); |
| T = dp_ptod(ptosfp(V0^I),[V0]); |
T = dp_ptod(simp_ff(V0^I),[V0]); |
| TT = dp_nf_tab_f(H[0][0],UT); |
TT = dp_nf_tab_f(H[0][0],UT); |
| H = cons([TT,T],H); |
H = cons([TT,T],H); |
| L = dp_lnf_f([TT,T],G); |
L = dp_lnf_f([TT,T],G); |
| Line 2436 def minipoly_sf_rat(G,V,F,V0) |
|
| Line 2443 def minipoly_sf_rat(G,V,F,V0) |
|
| Vc = setminus(vars(G),V); |
Vc = setminus(vars(G),V); |
| Gf = cons(V0-F,G); |
Gf = cons(V0-F,G); |
| Vf = append(V,[V0]); |
Vf = append(V,[V0]); |
| G3 = dp_gr_f_main(map(ptosfp,Gf),Vf,0,3); |
G3 = dp_gr_f_main(map(simp_ff,Gf),Vf,0,3); |
| for ( T = G3; T != []; T = cdr(T) ) { |
for ( T = G3; T != []; T = cdr(T) ) { |
| Vt = setminus(vars(car(T)),Vc); |
Vt = setminus(vars(car(T)),Vc); |
| if ( Vt == [V0] ) |
if ( Vt == [V0] ) |
| Line 2819 def henleq_gsl_sfrat(L,B,Vc,Eval) |
|
| Line 2826 def henleq_gsl_sfrat(L,B,Vc,Eval) |
|
| X = map(subst,X,V0,V0-E0); |
X = map(subst,X,V0,V0-E0); |
| if ( zerovector(RESTA*X+RESTB) ) { |
if ( zerovector(RESTA*X+RESTB) ) { |
| if ( dp_gr_print() ) print("end",0); |
if ( dp_gr_print() ) print("end",0); |
| return [X,ptosfp(1)]; |
return [X,simp_ff(1)]; |
| } else |
} else |
| return 0; |
return 0; |
| } else if ( COUNT == CCC ) { |
} else if ( COUNT == CCC ) { |
| Line 2882 def henleq_gsl_sfrat_higher(L,B,Vc,Eval) |
|
| Line 2889 def henleq_gsl_sfrat_higher(L,B,Vc,Eval) |
|
| X = map(mshift,X,Vc,E,-1); |
X = map(mshift,X,Vc,E,-1); |
| if ( zerovector(RESTA*X+RESTB) ) { |
if ( zerovector(RESTA*X+RESTB) ) { |
| if ( dp_gr_print() ) print("end",0); |
if ( dp_gr_print() ) print("end",0); |
| return [X,ptosfp(1)]; |
return [X,simp_ff(1)]; |
| } else |
} else |
| return 0; |
return 0; |
| } else if ( COUNT == CCC ) { |
} else if ( COUNT == CCC ) { |
| Line 2992 def polyvtoratv_higher(Vect,Vc,K) |
|
| Line 2999 def polyvtoratv_higher(Vect,Vc,K) |
|
| def polytorat_gcd(F,V,K) |
def polytorat_gcd(F,V,K) |
| { |
{ |
| if ( deg(F,V) < K ) |
if ( deg(F,V) < K ) |
| return [F,ptosfp(1)]; |
return [F,simp_ff(1)]; |
| F1 = Mod^(K*2); F2 = F; |
F1 = Mod^(K*2); F2 = F; |
| B1 = 0; B2 = 1; |
B1 = 0; B2 = 1; |
| while ( 1 ) { |
while ( 1 ) { |
| Line 3024 def polytorat_gcd(F,V,K) |
|
| Line 3031 def polytorat_gcd(F,V,K) |
|
| def polytorat(F,V,Mat,K) |
def polytorat(F,V,Mat,K) |
| { |
{ |
| if ( deg(F,V) < K ) |
if ( deg(F,V) < K ) |
| return [F,ptosfp(1)]; |
return [F,simp_ff(1)]; |
| for ( I = 0; I < K; I++ ) |
for ( I = 0; I < K; I++ ) |
| for ( J = 0; J < K; J++ ) |
for ( J = 0; J < K; J++ ) |
| Mat[I][J] = coef(F,I+K-J); |
Mat[I][J] = coef(F,I+K-J); |
| Line 3046 def polytorat_higher(F,V,K) |
|
| Line 3053 def polytorat_higher(F,V,K) |
|
| { |
{ |
| if ( K < 2 ) return 0; |
if ( K < 2 ) return 0; |
| if ( homogeneous_deg(F) < K ) |
if ( homogeneous_deg(F) < K ) |
| return [F,ptosfp(1)]; |
return [F,simp_ff(1)]; |
| D = create_icpoly(V,K); |
D = create_icpoly(V,K); |
| C = extract_coef(D*F,V,K,2*K); |
C = extract_coef(D*F,V,K,2*K); |
| Vc = vars(C); |
Vc = vars(C); |