=================================================================== RCS file: /home/cvs/OpenXM_contrib2/asir2000/lib/gr,v retrieving revision 1.2 retrieving revision 1.22 diff -u -p -r1.2 -r1.22 --- OpenXM_contrib2/asir2000/lib/gr 2000/01/11 06:43:37 1.2 +++ OpenXM_contrib2/asir2000/lib/gr 2006/07/24 06:36:01 1.22 @@ -1,4 +1,57 @@ -/* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.1.1.1 1999/12/03 07:39:11 noro Exp $ */ +/* + * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED + * All rights reserved. + * + * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, + * non-exclusive and royalty-free license to use, copy, modify and + * redistribute, solely for non-commercial and non-profit purposes, the + * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and + * conditions of this Agreement. For the avoidance of doubt, you acquire + * only a limited right to use the SOFTWARE hereunder, and FLL or any + * third party developer retains all rights, including but not limited to + * copyrights, in and to the SOFTWARE. + * + * (1) FLL does not grant you a license in any way for commercial + * purposes. You may use the SOFTWARE only for non-commercial and + * non-profit purposes only, such as academic, research and internal + * business use. + * (2) The SOFTWARE is protected by the Copyright Law of Japan and + * international copyright treaties. If you make copies of the SOFTWARE, + * with or without modification, as permitted hereunder, you shall affix + * to all such copies of the SOFTWARE the above copyright notice. + * (3) An explicit reference to this SOFTWARE and its copyright owner + * shall be made on your publication or presentation in any form of the + * results obtained by use of the SOFTWARE. + * (4) In the event that you modify the SOFTWARE, you shall notify FLL by + * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification + * for such modification or the source code of the modified part of the + * SOFTWARE. + * + * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL + * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND + * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS + * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' + * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY + * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. + * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, + * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY + * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL + * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES + * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES + * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY + * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF + * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART + * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY + * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, + * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. + * + * $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.21 2005/08/02 07:21:48 noro Exp $ +*/ + +module gr $ + /* Empty for now. It will be used in a future. */ +endmodule $ + extern INIT_COUNT,ITOR_FAIL$ extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ @@ -78,27 +131,43 @@ def tolex_tl(G0,V,O,W,H) def tolex(G0,V,O,W) { + Procs = getopt(procs); + TM = TE = TNF = 0; N = length(V); HM = hmlist(G0,V,O); ZD = zero_dim(HM,V,O); - if ( !ZD ) - error("tolex : ideal is not zero-dimensional!"); - MB = dp_mbase(map(dp_ptod,HM,V)); + if ( ZD ) + MB = dp_mbase(map(dp_ptod,HM,V)); + else + MB = 0; for ( J = 0; ; J++ ) { M = lprime(J); if ( !valid_modulus(HM,M) ) continue; - T0 = time()[0]; GM = tolexm(G0,V,O,W,M); TM += time()[0] - T0; - dp_ord(2); - DL = map(dp_etov,map(dp_ht,map(dp_ptod,GM,W))); - D = newvect(N); TL = []; - do - TL = cons(dp_dtop(dp_vtoe(D),W),TL); - while ( nextm(D,DL,N) ); - L = npos_check(DL); NPOSV = L[0]; DIM = L[1]; - T0 = time()[0]; NF = gennf(G0,TL,V,O,W[N-1],1)[0]; + T0 = time()[0]; + if ( ZD ) { + GM = tolexm(G0,V,O,W,M); + dp_ord(2); + DL = map(dp_etov,map(dp_ht,map(dp_ptod,GM,W))); + D = newvect(N); TL = []; + do + TL = cons(dp_dtop(dp_vtoe(D),W),TL); + while ( nextm(D,DL,N) ); + } else { + GM = dp_gr_mod_main(G0,W,0,M,2); + dp_ord(2); + for ( T = GM, S = 0; T != []; T = cdr(T) ) + for ( D = dp_ptod(car(T),V); D; D = dp_rest(D) ) + S += dp_ht(D); + TL = dp_terms(S,V); + } + TM += time()[0] - T0; + T0 = time()[0]; NF = gennf(G0,TL,V,O,W[N-1],ZD)[0]; TNF += time()[0] - T0; T0 = time()[0]; - R = tolex_main(V,O,NF,GM,M,MB); + if ( type(Procs) != -1 ) + R = tolex_d_main(V,O,NF,GM,M,MB,Procs); + else + R = tolex_main(V,O,NF,GM,M,MB); TE += time()[0] - T0; if ( R ) { if ( dp_gr_print() ) @@ -206,7 +275,8 @@ def tolex_gsl_main(G0,V,O,W,NFL,NPOSV,GM,M,MB) R += B[0][K]*TERMS[K]; LCM *= B[1]; SL = cons(cons(V1,[R,LCM]),SL); - print(["DN",B[1]]); + if ( dp_gr_print() ) + print(["DN",B[1]]); } return SL; } @@ -217,7 +287,8 @@ def hen_ttob_gsl(LHS,RHS,TERMS,M) L1 = idiv(LCM,LDN); R1 = idiv(LCM,RDN); T0 = time()[0]; S = henleq_gsl(RHS[0],LHS[0]*L1,M); - print(["henleq_gsl",time()[0]-T0]); + if ( dp_gr_print() ) + print(["henleq_gsl",time()[0]-T0]); N = length(TERMS); return [S[0],S[1]*R1]; } @@ -266,12 +337,20 @@ def dptov(P,W,MB) def tolex_main(V,O,NF,GM,M,MB) { - DIM = length(MB); - DV = newvect(DIM); + if ( MB ) { + PosDim = 0; + DIM = length(MB); + DV = newvect(DIM); + } else + PosDim = 1; for ( T = GM, SL = [], LCM = 1; T != []; T = cdr(T) ) { S = p_terms(car(T),V,2); + if ( PosDim ) { + MB = gather_nf_terms(S,NF,V,O); + DV = newvect(length(MB)); + } dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); - dp_ord(0); NHT = nf_tab_gsl(dp_ptod(LCM*car(S),V),NF); + dp_ord(O); NHT = nf_tab_gsl(dp_ptod(LCM*car(S),V),NF); dptov(NHT[0],DV,MB); dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); if ( !B ) @@ -282,11 +361,110 @@ def tolex_main(V,O,NF,GM,M,MB) U += B[0][I-1]*S[I]; R = ptozp(U); SL = cons(R,SL); - print(["DN",B[1]]); + if ( dp_gr_print() ) + print(["DN",B[1]]); } return SL; } +def tolex_d_main(V,O,NF,GM,M,MB,Procs) +{ + map(ox_reset,Procs); + /* register data in servers */ + map(ox_cmo_rpc,Procs,"register_data_for_find_base",NF,V,O,MB,M); + /* discard return value in stack */ + map(ox_pop_cmo,Procs); + Free = Procs; + Busy = []; + T = GM; + SL = []; + while ( T != [] || Busy != [] ){ + if ( Free == [] || T == [] ) { + /* someone is working; wait for data */ + Ready = ox_select(Busy); + Busy = setminus(Busy,Ready); + Free = append(Ready,Free); + for ( ; Ready != []; Ready = cdr(Ready) ) + SL = cons(ox_get(car(Ready)),SL); + } else { + P = car(Free); + Free = cdr(Free); + Busy = cons(P,Busy); + Template = car(T); + T = cdr(T); + ox_cmo_rpc(P,"find_base",Template); + ox_push_cmd(P,262); /* 262 = OX_popCMO */ + } + } + return SL; +} + +struct find_base_data { NF,V,O,MB,M,PosDim,DV }$ +extern Find_base$ + +def register_data_for_find_base(NF,V,O,MB,M) +{ + Find_base = newstruct(find_base_data); + Find_base->NF = NF; + Find_base->V = V; + Find_base->O = O; + Find_base->M = M; + Find_base->MB = MB; + + if ( MB ) { + Find_base->PosDim = 0; + DIM = length(MB); + Find_base->DV = newvect(DIM); + } else + Find_base->PosDim = 1; +} + +def find_base(S) { + NF = Find_base->NF; + V = Find_base->V; + O = Find_base->O; + MB = Find_base->MB; + M = Find_base->M; + PosDim = Find_base->PosDim; + DV = Find_base->DV; + + S = p_terms(S,V,2); + if ( PosDim ) { + MB = gather_nf_terms(S,NF,V,O); + DV = newvect(length(MB)); + } + dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); + dp_ord(O); NHT = nf_tab_gsl(dp_ptod(car(S),V),NF); + dptov(NHT[0],DV,MB); + dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); + if ( !B ) + return 0; + Len = length(S); + for ( U = B[1]*car(S), I = 1; I < Len; I++ ) + U += B[0][I-1]*S[I]; + R = ptozp(U); + return R; +} + +/* + * NF = [Pairs,DN] + * Pairs = [[NF1,T1],[NF2,T2],...] + */ + +def gather_nf_terms(S,NF,V,O) +{ + R = 0; + for ( T = S; T != []; T = cdr(T) ) { + DT = dp_ptod(car(T),V); + for ( U = NF[0]; U != []; U = cdr(U) ) + if ( car(U)[1] == DT ) { + R += tpoly(dp_terms(car(U)[0],V)); + break; + } + } + return map(dp_ptod,p_terms(R,V,O),V); +} + def reduce_dn(L) { NM = L[0]; DN = L[1]; V = vars(NM); @@ -301,6 +479,9 @@ def minipoly(G0,V,O,P,V0) if ( !zero_dim(hmlist(G0,V,O),V,O) ) error("tolex : ideal is not zero-dimensional!"); + Pin = P; + P = ptozp(P); + CP = sdiv(P,Pin); G1 = cons(V0-P,G0); O1 = [[0,1],[O,length(V)]]; V1 = cons(V0,V); @@ -321,7 +502,7 @@ def minipoly(G0,V,O,P,V0) TL = cons(V0^J,TL); NF = gennf(G1,TL,V1,O1,V0,1)[0]; R = tolex_main(V1,O1,NF,[MP],M,MB); - return R[0]; + return ptozp(subst(R[0],V0,CP*V0)); } } @@ -329,6 +510,15 @@ def minipoly(G0,V,O,P,V0) def gennf(G,TL,V,O,V0,FLAG) { + F = dp_gr_flags(); + for ( T = F; T != []; T = cdr(T) ) { + Key = car(T); T = cdr(T); + if ( Key == "Demand" ) { + Dir = car(T); break; + } + } + if ( Dir ) + return gennf_demand(G,TL,V,O,V0,FLAG,Dir); N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); @@ -351,7 +541,8 @@ def gennf(G,TL,V,O,V0,FLAG) if ( dp_gr_print() ) print(".",2); } - print(""); + if ( dp_gr_print() ) + print(""); TTAB = time()[0]-T0; } @@ -379,6 +570,78 @@ def gennf(G,TL,V,O,V0,FLAG) return [[map(adj_dn,H,LCM),LCM],PS,GI]; } +def gennf_demand(G,TL,V,O,V0,FLAG,Dir) +{ + N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); + NTL = length(TL); + for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { + PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); + } + for ( I = 0, DTL = []; TL != []; TL = cdr(TL) ) + DTL = cons(dp_ptod(car(TL),V),DTL); + for ( I = Len - 1, GI = []; I >= 0; I-- ) + GI = cons(I,GI); + + USE_TAB = (FLAG != 0); + if ( USE_TAB ) { + T0 = time()[0]; + MB = dp_mbase(HL); DIM = length(MB); + U = dp_ptod(V0,V); + UTAB = newvect(DIM); + for ( I = 0; I < DIM; I++ ) { + UTAB[I] = [MB[I],remove_cont(dp_true_nf(GI,U*MB[I],PS,1))]; + if ( dp_gr_print() ) + print(".",2); + } + if ( dp_gr_print() ) + print(""); + TTAB = time()[0]-T0; + } + + T0 = time()[0]; + for ( LCM = 1, Index = 0, H = []; DTL != []; Index++ ) { + if ( dp_gr_print() ) + print(".",2); + T = car(DTL); DTL = cdr(DTL); + if ( L = search_redble(T,H) ) { + L = nf_load(Dir,L[0]); + DD = dp_subd(T,L[1]); + if ( USE_TAB && (DD == U) ) { + NF = nf_tab(L[0],UTAB); + NF = [NF[0],dp_hc(L[1])*NF[1]*T]; + } else + NF = nf(GI,L[0]*dp_subd(T,L[1]),dp_hc(L[1])*T,PS); + } else + NF = nf(GI,T,T,PS); + NF = remove_cont(NF); + nf_save(NF,Dir,Index); + H = cons([Index,NF[1]],H); + LCM = ilcm(LCM,dp_hc(NF[1])); + } + TNF = time()[0]-T0; + if ( dp_gr_print() ) + print("gennf(TAB="+rtostr(TTAB)+" NF="+rtostr(TNF)+")"); + + for ( I = 0; I < NTL; I++ ) { + NF = nf_load(Dir,I); + NF = adj_dn(NF,LCM); + nf_save(NF,Dir,I); + } + for ( H = [], I = NTL-1; I >= 0; I-- ) + H = cons(nf_load(Dir,I),H); + return [[H,LCM],PS,GI]; +} + +def nf_load(Dir,I) +{ + return bload(Dir+"/nf"+rtostr(I)); +} + +def nf_save(NF,Dir,I) +{ + bsave(NF,Dir+"/nf"+rtostr(I)); +} + def adj_dn(P,D) { return [(idiv(D,dp_hc(P[1])))*P[0],dp_ht(P[1])]; @@ -410,6 +673,8 @@ def vtop(S,L,GSL) } } +/* broken */ + def leq_nf(TL,NF,LHS,V) { TLen = length(NF); @@ -506,7 +771,8 @@ def tolexm_main(PS,HL,V,W,M,FLAG) print(".",2); UTAB[I] = [MB[I],dp_nf_mod(GI,U*dp_mod(MB[I],M,[]),PS,1,M)]; } - print(""); + if ( dp_gr_print() ) + print(""); T = dp_mod(dp_ptod(dp_dtop(dp_vtoe(D),W),V),M,[]); H = G = [[T,T]]; DL = []; G2 = []; @@ -865,6 +1131,17 @@ def p_true_nf(P,B,V,O) { return [dp_dtop(L[0],V),L[1]]; } +def p_nf_mod(P,B,V,O,Mod) { + setmod(Mod); + dp_ord(O); DP = dp_mod(dp_ptod(P,V),Mod,[]); + N = length(B); DB = newvect(N); + for ( I = N-1, IL = []; I >= 0; I-- ) { + DB[I] = dp_mod(dp_ptod(B[I],V),Mod,[]); + IL = cons(I,IL); + } + return dp_dtop(dp_nf_mod(IL,DP,DB,1,Mod),V); +} + def p_terms(D,V,O) { dp_ord(O); @@ -882,14 +1159,22 @@ def dp_terms(D,V) def gb_comp(A,B) { - for ( T = A; T != []; T = cdr(T) ) { - for ( S = B, M = car(T), N = -M; S != []; S = cdr(S) ) - if ( car(S) == M || car(S) == N ) - break; - if ( S == [] ) + LA = length(A); + LB = length(B); + if ( LA != LB ) + return 0; + A = newvect(LA,A); + B = newvect(LB,B); + for ( I = 0; I < LA; I++ ) + A[I] *= headsgn(A[I]); + for ( I = 0; I < LB; I++ ) + B[I] *= headsgn(B[I]); + A1 = qsort(A); + B1 = qsort(B); + for ( I = 0; I < LA; I++ ) + if ( A1[I] != B1[I] && A1[I] != -B1[I] ) break; - } - return T == [] ? 1 : 0; + return I == LA ? 1 : 0; } def zero_dim(G,V,O) { @@ -1086,7 +1371,8 @@ def henleq_gsl(L,B,MOD) if ( !COUNT ) COUNT = 1; MOD2 = idiv(MOD,2); - for ( I = 0, C = BB, X = 0, PK = 1, CCC = 0, ITOR_FAIL = -1; ; + X = newvect(size(AA)[0]); + for ( I = 0, C = BB, PK = 1, CCC = 0, ITOR_FAIL = -1; ; I++, PK *= MOD ) { if ( zerovector(C) ) if ( zerovector(RESTA*X+RESTB) ) { @@ -1274,13 +1560,39 @@ def dgr(G,V,O) Win = "nonhomo"; Lose = P1; } else { - Win = "nhomo"; + Win = "homo"; Lose = P0; } ox_reset(Lose); return [Win,R]; } +/* competitive Gbase computation : F4 vs. Bucbberger */ +/* P : process list */ + +def dgrf4mod(G,V,M,O) +{ + P = getopt(proc); + if ( type(P) == -1 ) + return dp_f4_mod_main(G,V,M,O); + P0 = P[0]; P1 = P[1]; P = [P0,P1]; + map(ox_reset,P); + ox_cmo_rpc(P0,"dp_f4_mod_main",G,V,M,O); + ox_cmo_rpc(P1,"dp_gr_mod_main",G,V,0,M,O); + map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ + F = ox_select(P); + R = ox_get(F[0]); + if ( F[0] == P0 ) { + Win = "F4"; + Lose = P1; + } else { + Win = "Buchberger"; + Lose = P0; + } + ox_reset(Lose); + return [Win,R]; +} + /* functions for rpc */ def register_matrix(M) @@ -1306,5 +1618,327 @@ def r_ttob_gsl(L,M) def get_matrix() { REMOTE_MATRIX; +} + +extern NFArray$ + +/* + * HL = [[c,i,m,d],...] + * if c != 0 + * g = 0 + * g = (c*g + m*gi)/d + * ... + * finally compare g with NF + * if g == NF then NFArray[NFIndex] = g + * + * if c = 0 then HL consists of single history [0,i,0,0], + * which means that dehomogenization of NFArray[i] should be + * eqall to NF. + */ + +def check_trace(NF,NFIndex,HL) +{ + if ( !car(HL)[0] ) { + /* dehomogenization */ + DH = dp_dehomo(NFArray[car(HL)[1]]); + if ( NF == DH ) { + realloc_NFArray(NFIndex); + NFArray[NFIndex] = NF; + return 0; + } else + error("check_trace(dehomo)"); + } + + for ( G = 0, T = HL; T != []; T = cdr(T) ) { + H = car(T); + + Coeff = H[0]; + Index = H[1]; + Monomial = H[2]; + Denominator = H[3]; + + Reducer = NFArray[Index]; + G = (Coeff*G+Monomial*Reducer)/Denominator; + } + if ( NF == G ) { + realloc_NFArray(NFIndex); + NFArray[NFIndex] = NF; + return 0; + } else + error("check_trace"); +} + +/* + * Trace = [Input,[[j1,[[c,i,m,d],...]],[j2,[[...],...]],...]] + * if c != 0 + * g = 0 + * g = (c*g + m*gi)/d + * ... + * finally fj = g + */ + +def show_trace(Trace,V) +{ + Input = Trace[0]; + for ( I = 0, T = Input; T != []; T = cdr(T), I++ ) { + print("F"+rtostr(I)+"=",0); + print(dp_dtop(car(T),V)); + } + Trace = cdr(Trace); + for ( T = Trace; T != []; T = cdr(T) ) { + HL = car(T); + J = car(HL); HL = HL[1]; + L = length(HL); + print("F"+rtostr(J)+"=",0); + for ( I = 0; I < L; I++ ) print("(",0); + for ( First = 1, S = HL; S != []; S = cdr(S) ) { + H = car(S); + + Coeff = H[0]; + Index = H[1]; + Monomial = H[2]; + Denominator = H[3]; + if ( First ) { + if ( Monomial != 1 ) { + print("(",0); + print(type(Monomial)==9?dp_dtop(Monomial,V):Monomial,0); + print(")*",0); + } + print("F"+rtostr(Index)+")",0); + } else { + if ( Coeff != 1 ) { + print("*(",0); print(Coeff,0); print(")",0); + } + print("+",0); + if ( Monomial != 1 ) { + print("(",0); + print(type(Monomial)==9?dp_dtop(Monomial,V):Monomial,0); + print(")*",0); + } + print("F"+rtostr(Index)+")",0); + if ( Denominator != 1 ) { + print("/",0); print(Denominator,0); + } + } + if ( First ) First = 0; + } + print(""); + } +} + +def generating_relation(Trace,V) +{ + Trace = cdr(Trace); + Tab = []; + for ( T = Trace; T != []; T = cdr(T) ) { + HL = car(T); + J = car(HL); HL = HL[1]; + L = length(HL); + LHS = strtov("f"+rtostr(J)); + Dn = 1; + for ( First = 1, S = HL; S != []; S = cdr(S) ) { + H = car(S); + + Coeff = H[0]; + Index = H[1]; + Monomial = type(H[2])==9?dp_dtop(H[2],V):H[2]; + Denominator = H[3]; + F = strtov("f"+rtostr(Index)); + for ( Z = Tab; Z != []; Z = cdr(Z) ) + if ( Z[0][0] == F ) break; + if ( Z != [] ) Value = Z[0][1]; + else Value = [F,1]; + if ( First ) { + RHS = Monomial*Value[0]; + Dn *= Value[1]; + } else { + RHS = RHS*Coeff*Value[1]+Dn*Value[0]*Monomial; + Dn = Value[1]*Dn*Denominator; + } + VVVV = tttttttt; + P = ptozp(Dn*VVVV+RHS); + RHS = coef(P,0,VVVV); + Dn = coef(P,1,VVVV); + if ( First ) First = 0; + } + Tab = cons([LHS,[RHS,Dn]],Tab); + } + return Tab; +} + +end$ +/* + * realloc NFArray so that it can hold * an element as NFArray[Ind]. + */ + +def realloc_NFArray(Ind) +{ + if ( Ind == size(NFArray)[0] ) { + New = newvect(Ind + 100); + for ( I = 0; I < Ind; I++ ) + New[I] = NFArray[I]; + NFArray = New; + } +} + +/* + * create NFArray and initialize it by List. + */ + +def register_input(List) +{ + Len = length(List); + NFArray = newvect(Len+100,List); +} + +/* + tracetogen(): preliminary version + + dp_gr_main() returns [GB,GBIndex,Trace]. + GB : groebner basis + GBIndex : IndexList (corresponding to Trace) + Trace : [InputList,Trace0,Trace1,...] + TraceI : [Index,TraceList] + TraceList : [[Coef,Index,Monomial,Denominator],...] + Poly <- 0 + Poly <- (Coef*Poly+Monomial*PolyList[Index])/Denominator +*/ + +def tracetogen(G) +{ + GB = G[0]; GBIndex = G[1]; Trace = G[2]; + + InputList = Trace[0]; + Trace = cdr(Trace); + + /* number of initial basis */ + Nini = length(InputList); + + /* number of generated basis */ + Ngen = length(Trace); + + N = Nini + Ngen; + + /* stores traces */ + Tr = vector(N); + + /* stores coeffs */ + Coef = vector(N); + + /* XXX create dp_ptod(1,V) */ + HT = dp_ht(InputList[0]); + One = dp_subd(HT,HT); + + for ( I = 0; I < Nini; I++ ) { + Tr[I] = [1,I,One,1]; + C = vector(Nini); + C[I] = One; + Coef[I] = C; + } + for ( ; I < N; I++ ) + Tr[I] = Trace[I-Nini][1]; + + for ( T = GBIndex; T != []; T = cdr(T) ) + compute_coef_by_trace(car(T),Tr,Coef); + return Coef; +} + +def compute_coef_by_trace(I,Tr,Coef) +{ + if ( Coef[I] ) + return; + + /* XXX */ + Nini = size(Coef[0])[0]; + + /* initialize coef vector */ + CI = vector(Nini); + + for ( T = Tr[I]; T != []; T = cdr(T) ) { + /* Trace = [Coef,Index,Monomial,Denominator] */ + Trace = car(T); + C = Trace[0]; + Ind = Trace[1]; + Mon = Trace[2]; + Den = Trace[3]; + if ( !Coef[Ind] ) + compute_coef_by_trace(Ind,Tr,Coef); + + /* XXX */ + CT = newvect(Nini); + for ( J = 0; J < Nini; J++ ) + CT[J] = (C*CI[J]+Mon*Coef[Ind][J])/Den; + CI = CT; + } + Coef[I] = CI; +} + +extern Gbcheck_DP,Gbcheck_IL$ + +def register_data_for_gbcheck(DPL) +{ + for ( IL = [], I = length(DPL)-1; I >= 0; I-- ) + IL = cons(I,IL); + Gbcheck_DP = newvect(length(DPL),DPL); + Gbcheck_IL = IL; +} + +def sp_nf_for_gbcheck(Pair) +{ + SP = dp_sp(Gbcheck_DP[Pair[0]],Gbcheck_DP[Pair[1]]); + return dp_nf(Gbcheck_IL,SP,Gbcheck_DP,1); +} + +def gbcheck(B,V,O) +{ + dp_ord(O); + D = map(dp_ptod,B,V); + L = dp_gr_checklist(D,length(V)); + DP = L[0]; Plist = L[1]; + for ( IL = [], I = size(DP)[0]-1; I >= 0; I-- ) + IL = cons(I,IL); + Procs = getopt(proc); + if ( type(Procs) == 4 ) { + map(ox_reset,Procs); + /* register DP in servers */ + map(ox_cmo_rpc,Procs,"register_data_for_gbcheck",vtol(DP)); + /* discard return value in stack */ + map(ox_pop_cmo,Procs); + Free = Procs; + Busy = []; + T = Plist; + while ( T != [] || Busy != [] ){ + if ( Free == [] || T == [] ) { + /* someone is working; wait for data */ + Ready = ox_select(Busy); + Busy = setminus(Busy,Ready); + Free = append(Ready,Free); + for ( ; Ready != []; Ready = cdr(Ready) ) { + if ( ox_get(car(Ready)) ) { + map(ox_reset,Procs); + return 0; + } + } + } else { + P = car(Free); + Free = cdr(Free); + Busy = cons(P,Busy); + Pair = car(T); + T = cdr(T); + ox_cmo_rpc(P,"sp_nf_for_gbcheck",Pair); + ox_push_cmd(P,262); /* 262 = OX_popCMO */ + } + } + map(ox_reset,Procs); + return 1; + } else { + for ( T = Plist; T != []; T = cdr(T) ) { + Pair = T[0]; + SP = dp_sp(DP[Pair[0]],DP[Pair[1]]); + if ( dp_nf(IL,SP,DP,1) ) + return 0; + } + return 1; + } } end$