| version 1.3, 2000/06/05 02:26:48 |
version 1.9, 2001/09/05 08:09:10 |
|
|
| /* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.2 2000/01/11 06:43:37 noro Exp $ */ |
/* |
| |
* Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED |
| |
* All rights reserved. |
| |
* |
| |
* FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, |
| |
* non-exclusive and royalty-free license to use, copy, modify and |
| |
* redistribute, solely for non-commercial and non-profit purposes, the |
| |
* computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and |
| |
* conditions of this Agreement. For the avoidance of doubt, you acquire |
| |
* only a limited right to use the SOFTWARE hereunder, and FLL or any |
| |
* third party developer retains all rights, including but not limited to |
| |
* copyrights, in and to the SOFTWARE. |
| |
* |
| |
* (1) FLL does not grant you a license in any way for commercial |
| |
* purposes. You may use the SOFTWARE only for non-commercial and |
| |
* non-profit purposes only, such as academic, research and internal |
| |
* business use. |
| |
* (2) The SOFTWARE is protected by the Copyright Law of Japan and |
| |
* international copyright treaties. If you make copies of the SOFTWARE, |
| |
* with or without modification, as permitted hereunder, you shall affix |
| |
* to all such copies of the SOFTWARE the above copyright notice. |
| |
* (3) An explicit reference to this SOFTWARE and its copyright owner |
| |
* shall be made on your publication or presentation in any form of the |
| |
* results obtained by use of the SOFTWARE. |
| |
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
| |
* e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification |
| |
* for such modification or the source code of the modified part of the |
| |
* SOFTWARE. |
| |
* |
| |
* THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL |
| |
* MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND |
| |
* EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS |
| |
* FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' |
| |
* RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY |
| |
* MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. |
| |
* UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, |
| |
* OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY |
| |
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL |
| |
* DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES |
| |
* ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES |
| |
* FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY |
| |
* DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF |
| |
* SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART |
| |
* OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY |
| |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| |
* |
| |
* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.8 2001/04/09 02:42:29 noro Exp $ |
| |
*/ |
| extern INIT_COUNT,ITOR_FAIL$ |
extern INIT_COUNT,ITOR_FAIL$ |
| extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
| |
|
| Line 206 def tolex_gsl_main(G0,V,O,W,NFL,NPOSV,GM,M,MB) |
|
| Line 254 def tolex_gsl_main(G0,V,O,W,NFL,NPOSV,GM,M,MB) |
|
| R += B[0][K]*TERMS[K]; |
R += B[0][K]*TERMS[K]; |
| LCM *= B[1]; |
LCM *= B[1]; |
| SL = cons(cons(V1,[R,LCM]),SL); |
SL = cons(cons(V1,[R,LCM]),SL); |
| print(["DN",B[1]]); |
if ( dp_gr_print() ) |
| |
print(["DN",B[1]]); |
| } |
} |
| return SL; |
return SL; |
| } |
} |
| Line 217 def hen_ttob_gsl(LHS,RHS,TERMS,M) |
|
| Line 266 def hen_ttob_gsl(LHS,RHS,TERMS,M) |
|
| L1 = idiv(LCM,LDN); R1 = idiv(LCM,RDN); |
L1 = idiv(LCM,LDN); R1 = idiv(LCM,RDN); |
| T0 = time()[0]; |
T0 = time()[0]; |
| S = henleq_gsl(RHS[0],LHS[0]*L1,M); |
S = henleq_gsl(RHS[0],LHS[0]*L1,M); |
| print(["henleq_gsl",time()[0]-T0]); |
if ( dp_gr_print() ) |
| |
print(["henleq_gsl",time()[0]-T0]); |
| N = length(TERMS); |
N = length(TERMS); |
| return [S[0],S[1]*R1]; |
return [S[0],S[1]*R1]; |
| } |
} |
| Line 282 def tolex_main(V,O,NF,GM,M,MB) |
|
| Line 332 def tolex_main(V,O,NF,GM,M,MB) |
|
| U += B[0][I-1]*S[I]; |
U += B[0][I-1]*S[I]; |
| R = ptozp(U); |
R = ptozp(U); |
| SL = cons(R,SL); |
SL = cons(R,SL); |
| print(["DN",B[1]]); |
if ( dp_gr_print() ) |
| |
print(["DN",B[1]]); |
| } |
} |
| return SL; |
return SL; |
| } |
} |
| Line 351 def gennf(G,TL,V,O,V0,FLAG) |
|
| Line 402 def gennf(G,TL,V,O,V0,FLAG) |
|
| if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
| print(".",2); |
print(".",2); |
| } |
} |
| print(""); |
if ( dp_gr_print() ) |
| |
print(""); |
| TTAB = time()[0]-T0; |
TTAB = time()[0]-T0; |
| } |
} |
| |
|
| Line 506 def tolexm_main(PS,HL,V,W,M,FLAG) |
|
| Line 558 def tolexm_main(PS,HL,V,W,M,FLAG) |
|
| print(".",2); |
print(".",2); |
| UTAB[I] = [MB[I],dp_nf_mod(GI,U*dp_mod(MB[I],M,[]),PS,1,M)]; |
UTAB[I] = [MB[I],dp_nf_mod(GI,U*dp_mod(MB[I],M,[]),PS,1,M)]; |
| } |
} |
| print(""); |
if ( dp_gr_print() ) |
| |
print(""); |
| T = dp_mod(dp_ptod(dp_dtop(dp_vtoe(D),W),V),M,[]); |
T = dp_mod(dp_ptod(dp_dtop(dp_vtoe(D),W),V),M,[]); |
| H = G = [[T,T]]; |
H = G = [[T,T]]; |
| DL = []; G2 = []; |
DL = []; G2 = []; |
| Line 882 def dp_terms(D,V) |
|
| Line 935 def dp_terms(D,V) |
|
| |
|
| def gb_comp(A,B) |
def gb_comp(A,B) |
| { |
{ |
| for ( T = A; T != []; T = cdr(T) ) { |
LA = length(A); |
| for ( S = B, M = car(T), N = -M; S != []; S = cdr(S) ) |
LB = length(B); |
| if ( car(S) == M || car(S) == N ) |
if ( LA != LB ) |
| break; |
return 0; |
| if ( S == [] ) |
A1 = qsort(newvect(LA,A)); |
| |
B1 = qsort(newvect(LB,B)); |
| |
for ( I = 0; I < LA; I++ ) |
| |
if ( A1[I] != B1[I] && A1[I] != -B1[I] ) |
| break; |
break; |
| } |
return I == LA ? 1 : 0; |
| return T == [] ? 1 : 0; |
|
| } |
} |
| |
|
| def zero_dim(G,V,O) { |
def zero_dim(G,V,O) { |
| Line 1308 def get_matrix() |
|
| Line 1363 def get_matrix() |
|
| { |
{ |
| REMOTE_MATRIX; |
REMOTE_MATRIX; |
| } |
} |
| |
|
| |
extern NFArray$ |
| |
|
| |
/* |
| |
* HL = [[c,i,m,d],...] |
| |
* if c != 0 |
| |
* g = 0 |
| |
* g = (c*g + m*gi)/d |
| |
* ... |
| |
* finally compare g with NF |
| |
* if g == NF then NFArray[NFIndex] = g |
| |
* |
| |
* if c = 0 then HL consists of single history [0,i,0,0], |
| |
* which means that dehomogenization of NFArray[i] should be |
| |
* eqall to NF. |
| |
*/ |
| |
|
| |
def check_trace(NF,NFIndex,HL) |
| |
{ |
| |
if ( !car(HL)[0] ) { |
| |
/* dehomogenization */ |
| |
DH = dp_dehomo(NFArray[car(HL)[1]]); |
| |
if ( NF == DH ) { |
| |
realloc_NFArray(NFIndex); |
| |
NFArray[NFIndex] = NF; |
| |
return 0; |
| |
} else |
| |
error("check_trace(dehomo)"); |
| |
} |
| |
|
| |
for ( G = 0, T = HL; T != []; T = cdr(T) ) { |
| |
H = car(T); |
| |
|
| |
Coeff = H[0]; |
| |
Index = H[1]; |
| |
Monomial = H[2]; |
| |
Denominator = H[3]; |
| |
|
| |
Reducer = NFArray[Index]; |
| |
G = (Coeff*G+Monomial*Reducer)/Denominator; |
| |
} |
| |
if ( NF == G ) { |
| |
realloc_NFArray(NFIndex); |
| |
NFArray[NFIndex] = NF; |
| |
return 0; |
| |
} else |
| |
error("check_trace"); |
| |
} |
| |
|
| |
/* |
| |
* realloc NFArray so that it can hold * an element as NFArray[Ind]. |
| |
*/ |
| |
|
| |
def realloc_NFArray(Ind) |
| |
{ |
| |
if ( Ind == size(NFArray)[0] ) { |
| |
New = newvect(Ind + 100); |
| |
for ( I = 0; I < Ind; I++ ) |
| |
New[I] = NFArray[I]; |
| |
NFArray = New; |
| |
} |
| |
} |
| |
|
| |
/* |
| |
* create NFArray and initialize it by List. |
| |
*/ |
| |
|
| |
def register_input(List) |
| |
{ |
| |
Len = length(List); |
| |
NFArray = newvect(Len+100,List); |
| |
} |
| |
|
| |
/* |
| |
tracetogen(): preliminary version |
| |
|
| |
dp_gr_main() returns [GB,GBIndex,Trace]. |
| |
GB : groebner basis |
| |
GBIndex : IndexList (corresponding to Trace) |
| |
Trace : [InputList,Trace0,Trace1,...] |
| |
TraceI : [Index,TraceList] |
| |
TraceList : [[Coef,Index,Monomial,Denominator],...] |
| |
Poly <- 0 |
| |
Poly <- (Coef*Poly+Monomial*PolyList[Index])/Denominator |
| |
*/ |
| |
|
| |
def tracetogen(GBIndex,Trace) |
| |
{ |
| |
InputList = Trace[0]; |
| |
Trace = cdr(Trace); |
| |
|
| |
/* number of initial basis */ |
| |
Nini = length(InputList); |
| |
|
| |
/* number of generated basis */ |
| |
Ngen = length(Trace); |
| |
|
| |
N = Nini + Ngen; |
| |
|
| |
/* stores traces */ |
| |
Tr = vector(N); |
| |
|
| |
/* stores coeffs */ |
| |
Coef = vector(N); |
| |
|
| |
for ( I = 0; I < Nini; I++ ) { |
| |
Tr[I] = [1,I,1,1]; |
| |
C = vector(Nini); |
| |
C[I] = 1; |
| |
Coef[I] = C; |
| |
} |
| |
for ( ; I < N; I++ ) |
| |
Tr[I] = Trace[I-Nini][1]; |
| |
|
| |
for ( T = GBIndex; T != []; T = cdr(T) ) |
| |
compute_coef_by_trace(car(T),Tr,Coef); |
| |
return Coef; |
| |
} |
| |
|
| |
def compute_coef_by_trace(I,Tr,Coef) |
| |
{ |
| |
if ( Coef[I] ) |
| |
return; |
| |
|
| |
/* XXX */ |
| |
Nini = size(Coef[0])[0]; |
| |
|
| |
/* initialize coef vector */ |
| |
CI = vector(Nini); |
| |
|
| |
for ( T = Tr[I]; T != []; T = cdr(T) ) { |
| |
/* Trace = [Coef,Index,Monomial,Denominator] */ |
| |
Trace = car(T); |
| |
C = Trace[0]; |
| |
Ind = Trace[1]; |
| |
Mon = Trace[2]; |
| |
Den = Trace[3]; |
| |
if ( !Coef[Ind] ) |
| |
compute_coef_by_trace(Ind,Tr,Coef); |
| |
|
| |
/* XXX */ |
| |
CT = newvect(Nini); |
| |
for ( J = 0; J < Nini; J++ ) |
| |
CT[J] = (C*CI[J]+Mon*Coef[Ind][J])/Den; |
| |
CI = CT; |
| |
} |
| |
Coef[I] = CI; |
| |
} |
| |
end$ |
| end$ |
end$ |