version 1.6, 2000/08/22 05:04:22 |
version 1.12, 2001/11/01 10:00:19 |
|
|
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* |
* |
* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.5 2000/08/21 08:31:41 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.11 2001/09/28 00:41:16 noro Exp $ |
*/ |
*/ |
extern INIT_COUNT,ITOR_FAIL$ |
extern INIT_COUNT,ITOR_FAIL$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
Line 254 def tolex_gsl_main(G0,V,O,W,NFL,NPOSV,GM,M,MB) |
|
Line 254 def tolex_gsl_main(G0,V,O,W,NFL,NPOSV,GM,M,MB) |
|
R += B[0][K]*TERMS[K]; |
R += B[0][K]*TERMS[K]; |
LCM *= B[1]; |
LCM *= B[1]; |
SL = cons(cons(V1,[R,LCM]),SL); |
SL = cons(cons(V1,[R,LCM]),SL); |
print(["DN",B[1]]); |
if ( dp_gr_print() ) |
|
print(["DN",B[1]]); |
} |
} |
return SL; |
return SL; |
} |
} |
Line 265 def hen_ttob_gsl(LHS,RHS,TERMS,M) |
|
Line 266 def hen_ttob_gsl(LHS,RHS,TERMS,M) |
|
L1 = idiv(LCM,LDN); R1 = idiv(LCM,RDN); |
L1 = idiv(LCM,LDN); R1 = idiv(LCM,RDN); |
T0 = time()[0]; |
T0 = time()[0]; |
S = henleq_gsl(RHS[0],LHS[0]*L1,M); |
S = henleq_gsl(RHS[0],LHS[0]*L1,M); |
print(["henleq_gsl",time()[0]-T0]); |
if ( dp_gr_print() ) |
|
print(["henleq_gsl",time()[0]-T0]); |
N = length(TERMS); |
N = length(TERMS); |
return [S[0],S[1]*R1]; |
return [S[0],S[1]*R1]; |
} |
} |
Line 330 def tolex_main(V,O,NF,GM,M,MB) |
|
Line 332 def tolex_main(V,O,NF,GM,M,MB) |
|
U += B[0][I-1]*S[I]; |
U += B[0][I-1]*S[I]; |
R = ptozp(U); |
R = ptozp(U); |
SL = cons(R,SL); |
SL = cons(R,SL); |
print(["DN",B[1]]); |
if ( dp_gr_print() ) |
|
print(["DN",B[1]]); |
} |
} |
return SL; |
return SL; |
} |
} |
Line 399 def gennf(G,TL,V,O,V0,FLAG) |
|
Line 402 def gennf(G,TL,V,O,V0,FLAG) |
|
if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
print(".",2); |
print(".",2); |
} |
} |
print(""); |
if ( dp_gr_print() ) |
|
print(""); |
TTAB = time()[0]-T0; |
TTAB = time()[0]-T0; |
} |
} |
|
|
Line 554 def tolexm_main(PS,HL,V,W,M,FLAG) |
|
Line 558 def tolexm_main(PS,HL,V,W,M,FLAG) |
|
print(".",2); |
print(".",2); |
UTAB[I] = [MB[I],dp_nf_mod(GI,U*dp_mod(MB[I],M,[]),PS,1,M)]; |
UTAB[I] = [MB[I],dp_nf_mod(GI,U*dp_mod(MB[I],M,[]),PS,1,M)]; |
} |
} |
print(""); |
if ( dp_gr_print() ) |
|
print(""); |
T = dp_mod(dp_ptod(dp_dtop(dp_vtoe(D),W),V),M,[]); |
T = dp_mod(dp_ptod(dp_dtop(dp_vtoe(D),W),V),M,[]); |
H = G = [[T,T]]; |
H = G = [[T,T]]; |
DL = []; G2 = []; |
DL = []; G2 = []; |
Line 913 def p_true_nf(P,B,V,O) { |
|
Line 918 def p_true_nf(P,B,V,O) { |
|
return [dp_dtop(L[0],V),L[1]]; |
return [dp_dtop(L[0],V),L[1]]; |
} |
} |
|
|
|
def p_nf_mod(P,B,V,O,Mod) { |
|
setmod(Mod); |
|
dp_ord(O); DP = dp_mod(dp_ptod(P,V),Mod,[]); |
|
N = length(B); DB = newvect(N); |
|
for ( I = N-1, IL = []; I >= 0; I-- ) { |
|
DB[I] = dp_mod(dp_ptod(B[I],V),Mod,[]); |
|
IL = cons(I,IL); |
|
} |
|
return dp_dtop(dp_nf_mod(IL,DP,DB,1,Mod),V); |
|
} |
|
|
def p_terms(D,V,O) |
def p_terms(D,V,O) |
{ |
{ |
dp_ord(O); |
dp_ord(O); |
Line 930 def dp_terms(D,V) |
|
Line 946 def dp_terms(D,V) |
|
|
|
def gb_comp(A,B) |
def gb_comp(A,B) |
{ |
{ |
for ( T = A; T != []; T = cdr(T) ) { |
LA = length(A); |
for ( S = B, M = car(T), N = -M; S != []; S = cdr(S) ) |
LB = length(B); |
if ( car(S) == M || car(S) == N ) |
if ( LA != LB ) |
break; |
return 0; |
if ( S == [] ) |
A1 = qsort(newvect(LA,A)); |
|
B1 = qsort(newvect(LB,B)); |
|
for ( I = 0; I < LA; I++ ) |
|
if ( A1[I] != B1[I] && A1[I] != -B1[I] ) |
break; |
break; |
} |
return I == LA ? 1 : 0; |
return T == [] ? 1 : 0; |
|
} |
} |
|
|
def zero_dim(G,V,O) { |
def zero_dim(G,V,O) { |
|
|
Win = "nonhomo"; |
Win = "nonhomo"; |
Lose = P1; |
Lose = P1; |
} else { |
} else { |
Win = "nhomo"; |
Win = "homo"; |
Lose = P0; |
Lose = P0; |
} |
} |
ox_reset(Lose); |
ox_reset(Lose); |
return [Win,R]; |
return [Win,R]; |
} |
} |
|
|
|
/* competitive Gbase computation : F4 vs. Bucbberger */ |
|
/* P : process list */ |
|
|
|
def dgrf4mod(G,V,M,O) |
|
{ |
|
P = getopt(proc); |
|
if ( type(P) == -1 ) |
|
return dp_f4_mod_main(G,V,M,O); |
|
P0 = P[0]; P1 = P[1]; P = [P0,P1]; |
|
map(ox_reset,P); |
|
ox_cmo_rpc(P0,"dp_f4_mod_main",G,V,M,O); |
|
ox_cmo_rpc(P1,"dp_gr_mod_main",G,V,0,M,O); |
|
map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ |
|
F = ox_select(P); |
|
R = ox_get(F[0]); |
|
if ( F[0] == P0 ) { |
|
Win = "F4"; |
|
Lose = P1; |
|
} else { |
|
Win = "Buchberger"; |
|
Lose = P0; |
|
} |
|
ox_reset(Lose); |
|
return [Win,R]; |
|
} |
|
|
/* functions for rpc */ |
/* functions for rpc */ |
|
|
def register_matrix(M) |
def register_matrix(M) |
Line 1427 def register_input(List) |
|
Line 1471 def register_input(List) |
|
{ |
{ |
Len = length(List); |
Len = length(List); |
NFArray = newvect(Len+100,List); |
NFArray = newvect(Len+100,List); |
|
} |
|
|
|
/* |
|
tracetogen(): preliminary version |
|
|
|
dp_gr_main() returns [GB,GBIndex,Trace]. |
|
GB : groebner basis |
|
GBIndex : IndexList (corresponding to Trace) |
|
Trace : [InputList,Trace0,Trace1,...] |
|
TraceI : [Index,TraceList] |
|
TraceList : [[Coef,Index,Monomial,Denominator],...] |
|
Poly <- 0 |
|
Poly <- (Coef*Poly+Monomial*PolyList[Index])/Denominator |
|
*/ |
|
|
|
def tracetogen(G) |
|
{ |
|
GB = G[0]; GBIndex = G[1]; Trace = G[2]; |
|
|
|
InputList = Trace[0]; |
|
Trace = cdr(Trace); |
|
|
|
/* number of initial basis */ |
|
Nini = length(InputList); |
|
|
|
/* number of generated basis */ |
|
Ngen = length(Trace); |
|
|
|
N = Nini + Ngen; |
|
|
|
/* stores traces */ |
|
Tr = vector(N); |
|
|
|
/* stores coeffs */ |
|
Coef = vector(N); |
|
|
|
/* XXX create dp_ptod(1,V) */ |
|
HT = dp_ht(InputList[0]); |
|
One = dp_subd(HT,HT); |
|
|
|
for ( I = 0; I < Nini; I++ ) { |
|
Tr[I] = [1,I,One,1]; |
|
C = vector(Nini); |
|
C[I] = One; |
|
Coef[I] = C; |
|
} |
|
for ( ; I < N; I++ ) |
|
Tr[I] = Trace[I-Nini][1]; |
|
|
|
for ( T = GBIndex; T != []; T = cdr(T) ) |
|
compute_coef_by_trace(car(T),Tr,Coef); |
|
return Coef; |
|
} |
|
|
|
def compute_coef_by_trace(I,Tr,Coef) |
|
{ |
|
if ( Coef[I] ) |
|
return; |
|
|
|
/* XXX */ |
|
Nini = size(Coef[0])[0]; |
|
|
|
/* initialize coef vector */ |
|
CI = vector(Nini); |
|
|
|
for ( T = Tr[I]; T != []; T = cdr(T) ) { |
|
/* Trace = [Coef,Index,Monomial,Denominator] */ |
|
Trace = car(T); |
|
C = Trace[0]; |
|
Ind = Trace[1]; |
|
Mon = Trace[2]; |
|
Den = Trace[3]; |
|
if ( !Coef[Ind] ) |
|
compute_coef_by_trace(Ind,Tr,Coef); |
|
|
|
/* XXX */ |
|
CT = newvect(Nini); |
|
for ( J = 0; J < Nini; J++ ) |
|
CT[J] = (C*CI[J]+Mon*Coef[Ind][J])/Den; |
|
CI = CT; |
|
} |
|
Coef[I] = CI; |
} |
} |
end$ |
end$ |