| version 1.5, 2000/08/21 08:31:41 |
version 1.8, 2001/04/09 02:42:29 |
|
|
| * shall be made on your publication or presentation in any form of the |
* shall be made on your publication or presentation in any form of the |
| * results obtained by use of the SOFTWARE. |
* results obtained by use of the SOFTWARE. |
| * (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
| * e-mail at risa-admin@flab.fujitsu.co.jp of the detailed specification |
* e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification |
| * for such modification or the source code of the modified part of the |
* for such modification or the source code of the modified part of the |
| * SOFTWARE. |
* SOFTWARE. |
| * |
* |
|
|
| * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| * |
* |
| * $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.4 2000/07/14 08:26:40 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.7 2000/09/07 23:59:55 noro Exp $ |
| */ |
*/ |
| extern INIT_COUNT,ITOR_FAIL$ |
extern INIT_COUNT,ITOR_FAIL$ |
| extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
| Line 254 def tolex_gsl_main(G0,V,O,W,NFL,NPOSV,GM,M,MB) |
|
| Line 254 def tolex_gsl_main(G0,V,O,W,NFL,NPOSV,GM,M,MB) |
|
| R += B[0][K]*TERMS[K]; |
R += B[0][K]*TERMS[K]; |
| LCM *= B[1]; |
LCM *= B[1]; |
| SL = cons(cons(V1,[R,LCM]),SL); |
SL = cons(cons(V1,[R,LCM]),SL); |
| print(["DN",B[1]]); |
if ( dp_gr_print() ) |
| |
print(["DN",B[1]]); |
| } |
} |
| return SL; |
return SL; |
| } |
} |
| Line 265 def hen_ttob_gsl(LHS,RHS,TERMS,M) |
|
| Line 266 def hen_ttob_gsl(LHS,RHS,TERMS,M) |
|
| L1 = idiv(LCM,LDN); R1 = idiv(LCM,RDN); |
L1 = idiv(LCM,LDN); R1 = idiv(LCM,RDN); |
| T0 = time()[0]; |
T0 = time()[0]; |
| S = henleq_gsl(RHS[0],LHS[0]*L1,M); |
S = henleq_gsl(RHS[0],LHS[0]*L1,M); |
| print(["henleq_gsl",time()[0]-T0]); |
if ( dp_gr_print() ) |
| |
print(["henleq_gsl",time()[0]-T0]); |
| N = length(TERMS); |
N = length(TERMS); |
| return [S[0],S[1]*R1]; |
return [S[0],S[1]*R1]; |
| } |
} |
| Line 330 def tolex_main(V,O,NF,GM,M,MB) |
|
| Line 332 def tolex_main(V,O,NF,GM,M,MB) |
|
| U += B[0][I-1]*S[I]; |
U += B[0][I-1]*S[I]; |
| R = ptozp(U); |
R = ptozp(U); |
| SL = cons(R,SL); |
SL = cons(R,SL); |
| print(["DN",B[1]]); |
if ( dp_gr_print() ) |
| |
print(["DN",B[1]]); |
| } |
} |
| return SL; |
return SL; |
| } |
} |
| Line 399 def gennf(G,TL,V,O,V0,FLAG) |
|
| Line 402 def gennf(G,TL,V,O,V0,FLAG) |
|
| if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
| print(".",2); |
print(".",2); |
| } |
} |
| print(""); |
if ( dp_gr_print() ) |
| |
print(""); |
| TTAB = time()[0]-T0; |
TTAB = time()[0]-T0; |
| } |
} |
| |
|
| Line 554 def tolexm_main(PS,HL,V,W,M,FLAG) |
|
| Line 558 def tolexm_main(PS,HL,V,W,M,FLAG) |
|
| print(".",2); |
print(".",2); |
| UTAB[I] = [MB[I],dp_nf_mod(GI,U*dp_mod(MB[I],M,[]),PS,1,M)]; |
UTAB[I] = [MB[I],dp_nf_mod(GI,U*dp_mod(MB[I],M,[]),PS,1,M)]; |
| } |
} |
| print(""); |
if ( dp_gr_print() ) |
| |
print(""); |
| T = dp_mod(dp_ptod(dp_dtop(dp_vtoe(D),W),V),M,[]); |
T = dp_mod(dp_ptod(dp_dtop(dp_vtoe(D),W),V),M,[]); |
| H = G = [[T,T]]; |
H = G = [[T,T]]; |
| DL = []; G2 = []; |
DL = []; G2 = []; |
| Line 930 def dp_terms(D,V) |
|
| Line 935 def dp_terms(D,V) |
|
| |
|
| def gb_comp(A,B) |
def gb_comp(A,B) |
| { |
{ |
| for ( T = A; T != []; T = cdr(T) ) { |
LA = length(A); |
| for ( S = B, M = car(T), N = -M; S != []; S = cdr(S) ) |
LB = length(B); |
| if ( car(S) == M || car(S) == N ) |
if ( LA != LB ) |
| break; |
return 0; |
| if ( S == [] ) |
A1 = qsort(newvect(LA,A)); |
| |
B1 = qsort(newvect(LB,B)); |
| |
for ( I = 0; I < LA; I++ ) |
| |
if ( A1[I] != B1[I] && A1[I] != -B1[I] ) |
| break; |
break; |
| } |
return I == LA ? 1 : 0; |
| return T == [] ? 1 : 0; |
|
| } |
} |
| |
|
| def zero_dim(G,V,O) { |
def zero_dim(G,V,O) { |