| version 1.1, 1999/12/03 07:39:11 |
version 1.4, 2000/07/14 08:26:40 |
|
|
| /* $OpenXM: OpenXM/src/asir99/lib/gr,v 1.1.1.1 1999/11/10 08:12:31 noro Exp $ */ |
/* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.3 2000/06/05 02:26:48 noro Exp $ */ |
| extern INIT_COUNT,ITOR_FAIL$ |
extern INIT_COUNT,ITOR_FAIL$ |
| extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
| |
|
| Line 1086 def henleq_gsl(L,B,MOD) |
|
| Line 1086 def henleq_gsl(L,B,MOD) |
|
| if ( !COUNT ) |
if ( !COUNT ) |
| COUNT = 1; |
COUNT = 1; |
| MOD2 = idiv(MOD,2); |
MOD2 = idiv(MOD,2); |
| for ( I = 0, C = BB, X = 0, PK = 1, CCC = 0, ITOR_FAIL = -1; ; |
X = newvect(size(AA)[0]); |
| |
for ( I = 0, C = BB, PK = 1, CCC = 0, ITOR_FAIL = -1; ; |
| I++, PK *= MOD ) { |
I++, PK *= MOD ) { |
| if ( zerovector(C) ) |
if ( zerovector(C) ) |
| if ( zerovector(RESTA*X+RESTB) ) { |
if ( zerovector(RESTA*X+RESTB) ) { |
| Line 1258 def vs_dim(G,V,O) |
|
| Line 1259 def vs_dim(G,V,O) |
|
| error("vs_dim : ideal is not zero-dimensional!"); |
error("vs_dim : ideal is not zero-dimensional!"); |
| } |
} |
| |
|
| def dgr(G,V,O,P) |
def dgr(G,V,O) |
| { |
{ |
| |
P = getopt(proc); |
| |
if ( type(P) == -1 ) |
| |
return gr(G,V,O); |
| P0 = P[0]; P1 = P[1]; P = [P0,P1]; |
P0 = P[0]; P1 = P[1]; P = [P0,P1]; |
| flush(P0); flush(P1); |
map(ox_reset,P); |
| rpc(P0,"dp_gr_main",G,V,0,1,O); |
ox_cmo_rpc(P0,"dp_gr_main",G,V,0,1,O); |
| rpc(P1,"dp_gr_main",G,V,1,1,O); |
ox_cmo_rpc(P1,"dp_gr_main",G,V,1,1,O); |
| F = select(P); |
map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ |
| R = rpcrecv(F[0]); flush(P0); flush(P1); |
F = ox_select(P); |
| return R; |
R = ox_get(F[0]); |
| |
if ( F[0] == P0 ) { |
| |
Win = "nonhomo"; |
| |
Lose = P1; |
| |
} else { |
| |
Win = "nhomo"; |
| |
Lose = P0; |
| |
} |
| |
ox_reset(Lose); |
| |
return [Win,R]; |
| } |
} |
| |
|
| /* functions for rpc */ |
/* functions for rpc */ |
| Line 1294 def r_ttob_gsl(L,M) |
|
| Line 1307 def r_ttob_gsl(L,M) |
|
| def get_matrix() |
def get_matrix() |
| { |
{ |
| REMOTE_MATRIX; |
REMOTE_MATRIX; |
| |
} |
| |
|
| |
extern NFArray$ |
| |
|
| |
/* |
| |
* HL = [[c,i,m,d],...] |
| |
* if c != 0 |
| |
* g = 0 |
| |
* g = (c*g + m*gi)/d |
| |
* ... |
| |
* finally compare g with NF |
| |
* if g == NF then NFArray[NFIndex] = g |
| |
* |
| |
* if c = 0 then HL consists of single history [0,i,0,0], |
| |
* which means that dehomogenization of NFArray[i] should be |
| |
* eqall to NF. |
| |
*/ |
| |
|
| |
def check_trace(NF,NFIndex,HL) |
| |
{ |
| |
if ( !car(HL)[0] ) { |
| |
/* dehomogenization */ |
| |
DH = dp_dehomo(NFArray[car(HL)[1]]); |
| |
if ( NF == DH ) { |
| |
realloc_NFArray(NFIndex); |
| |
NFArray[NFIndex] = NF; |
| |
return 0; |
| |
} else |
| |
error("check_trace(dehomo)"); |
| |
} |
| |
|
| |
for ( G = 0, T = HL; T != []; T = cdr(T) ) { |
| |
H = car(T); |
| |
|
| |
Coeff = H[0]; |
| |
Index = H[1]; |
| |
Monomial = H[2]; |
| |
Denominator = H[3]; |
| |
|
| |
Reducer = NFArray[Index]; |
| |
G = (Coeff*G+Monomial*Reducer)/Denominator; |
| |
} |
| |
if ( NF == G ) { |
| |
realloc_NFArray(NFIndex); |
| |
NFArray[NFIndex] = NF; |
| |
return 0; |
| |
} else |
| |
error("check_trace"); |
| |
} |
| |
|
| |
/* |
| |
* realloc NFArray so that it can hold * an element as NFArray[Ind]. |
| |
*/ |
| |
|
| |
def realloc_NFArray(Ind) |
| |
{ |
| |
if ( Ind == size(NFArray)[0] ) { |
| |
New = newvect(Ind + 100); |
| |
for ( I = 0; I < Ind; I++ ) |
| |
New[I] = NFArray[I]; |
| |
NFArray = New; |
| |
} |
| |
} |
| |
|
| |
/* |
| |
* create NFArray and initialize it by List. |
| |
*/ |
| |
|
| |
def register_input(List) |
| |
{ |
| |
Len = length(List); |
| |
NFArray = newvect(Len+100,List); |
| } |
} |
| end$ |
end$ |