| version 1.19, 2003/10/20 00:58:47 |
version 1.26, 2007/07/17 08:17:42 |
|
|
| * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| * |
* |
| * $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.18 2003/06/21 02:09:17 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.25 2007/01/18 08:09:02 noro Exp $ |
| */ |
*/ |
| |
|
| module gr $ |
module gr $ |
| Line 153 def tolex(G0,V,O,W) |
|
| Line 153 def tolex(G0,V,O,W) |
|
| TL = cons(dp_dtop(dp_vtoe(D),W),TL); |
TL = cons(dp_dtop(dp_vtoe(D),W),TL); |
| while ( nextm(D,DL,N) ); |
while ( nextm(D,DL,N) ); |
| } else { |
} else { |
| GM = dp_gr_mod_main(G0,W,0,M,2); |
HVN = "h"; |
| |
WN = map(rtostr,W); |
| |
while ( member(HVN,WN) ) HVN += "h"; |
| |
HV = strtov(HVN); |
| |
G0H = map(homogenize,G0,W,HV); |
| |
GMH = nd_gr(G0H,append(W,[HV]),M,1); |
| |
GMH=map(subst,GMH,HV,1); |
| |
GM = nd_gr_postproc(GMH,W,M,2,0); |
| dp_ord(2); |
dp_ord(2); |
| for ( T = GM, S = 0; T != []; T = cdr(T) ) |
for ( T = GM, S = 0; T != []; T = cdr(T) ) |
| for ( D = dp_ptod(car(T),V); D; D = dp_rest(D) ) |
for ( D = dp_ptod(car(T),V); D; D = dp_rest(D) ) |
| Line 197 def tolex_gsl(G0,V,O,W) |
|
| Line 204 def tolex_gsl(G0,V,O,W) |
|
| while ( nextm(D,DL,N) ); |
while ( nextm(D,DL,N) ); |
| L = npos_check(DL); NPOSV = L[0]; DIM = L[1]; |
L = npos_check(DL); NPOSV = L[0]; DIM = L[1]; |
| if ( NPOSV >= 0 ) { |
if ( NPOSV >= 0 ) { |
| |
if ( dp_gr_print() ) print("shape base"); |
| V0 = W[NPOSV]; |
V0 = W[NPOSV]; |
| T0 = time()[0]; NFL = gennf(G0,TL,V,O,V0,1); |
T0 = time()[0]; NFL = gennf(G0,TL,V,O,V0,1); |
| TNF += time()[0] - T0; |
TNF += time()[0] - T0; |
| Line 510 def minipoly(G0,V,O,P,V0) |
|
| Line 518 def minipoly(G0,V,O,P,V0) |
|
| |
|
| def gennf(G,TL,V,O,V0,FLAG) |
def gennf(G,TL,V,O,V0,FLAG) |
| { |
{ |
| |
F = dp_gr_flags(); |
| |
for ( T = F; T != []; T = cdr(T) ) { |
| |
Key = car(T); T = cdr(T); |
| |
if ( Key == "Demand" ) { |
| |
Dir = car(T); break; |
| |
} |
| |
} |
| |
if ( Dir ) |
| |
return gennf_demand(G,TL,V,O,V0,FLAG,Dir); |
| N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
| for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
| PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
| Line 561 def gennf(G,TL,V,O,V0,FLAG) |
|
| Line 578 def gennf(G,TL,V,O,V0,FLAG) |
|
| return [[map(adj_dn,H,LCM),LCM],PS,GI]; |
return [[map(adj_dn,H,LCM),LCM],PS,GI]; |
| } |
} |
| |
|
| |
def gennf_demand(G,TL,V,O,V0,FLAG,Dir) |
| |
{ |
| |
N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
| |
NTL = length(TL); |
| |
for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
| |
PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
| |
} |
| |
for ( I = 0, DTL = []; TL != []; TL = cdr(TL) ) |
| |
DTL = cons(dp_ptod(car(TL),V),DTL); |
| |
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
| |
GI = cons(I,GI); |
| |
|
| |
USE_TAB = (FLAG != 0); |
| |
if ( USE_TAB ) { |
| |
T0 = time()[0]; |
| |
MB = dp_mbase(HL); DIM = length(MB); |
| |
U = dp_ptod(V0,V); |
| |
UTAB = newvect(DIM); |
| |
for ( I = 0; I < DIM; I++ ) { |
| |
UTAB[I] = [MB[I],remove_cont(dp_true_nf(GI,U*MB[I],PS,1))]; |
| |
if ( dp_gr_print() ) |
| |
print(".",2); |
| |
} |
| |
if ( dp_gr_print() ) |
| |
print(""); |
| |
TTAB = time()[0]-T0; |
| |
} |
| |
|
| |
T0 = time()[0]; |
| |
for ( LCM = 1, Index = 0, H = []; DTL != []; Index++ ) { |
| |
if ( dp_gr_print() ) |
| |
print(".",2); |
| |
T = car(DTL); DTL = cdr(DTL); |
| |
if ( L = search_redble(T,H) ) { |
| |
L = nf_load(Dir,L[0]); |
| |
DD = dp_subd(T,L[1]); |
| |
if ( USE_TAB && (DD == U) ) { |
| |
NF = nf_tab(L[0],UTAB); |
| |
NF = [NF[0],dp_hc(L[1])*NF[1]*T]; |
| |
} else |
| |
NF = nf(GI,L[0]*dp_subd(T,L[1]),dp_hc(L[1])*T,PS); |
| |
} else |
| |
NF = nf(GI,T,T,PS); |
| |
NF = remove_cont(NF); |
| |
nf_save(NF,Dir,Index); |
| |
H = cons([Index,NF[1]],H); |
| |
LCM = ilcm(LCM,dp_hc(NF[1])); |
| |
} |
| |
TNF = time()[0]-T0; |
| |
if ( dp_gr_print() ) |
| |
print("gennf(TAB="+rtostr(TTAB)+" NF="+rtostr(TNF)+")"); |
| |
|
| |
for ( I = 0; I < NTL; I++ ) { |
| |
NF = nf_load(Dir,I); |
| |
NF = adj_dn(NF,LCM); |
| |
nf_save(NF,Dir,I); |
| |
} |
| |
for ( H = [], I = NTL-1; I >= 0; I-- ) |
| |
H = cons(nf_load(Dir,I),H); |
| |
return [[H,LCM],PS,GI]; |
| |
} |
| |
|
| |
def nf_load(Dir,I) |
| |
{ |
| |
return bload(Dir+"/nf"+rtostr(I)); |
| |
} |
| |
|
| |
def nf_save(NF,Dir,I) |
| |
{ |
| |
bsave(NF,Dir+"/nf"+rtostr(I)); |
| |
} |
| |
|
| def adj_dn(P,D) |
def adj_dn(P,D) |
| { |
{ |
| return [(idiv(D,dp_hc(P[1])))*P[0],dp_ht(P[1])]; |
return [(idiv(D,dp_hc(P[1])))*P[0],dp_ht(P[1])]; |
| Line 1034 def p_nf(P,B,V,O) { |
|
| Line 1123 def p_nf(P,B,V,O) { |
|
| N = length(B); DB = newvect(N); |
N = length(B); DB = newvect(N); |
| for ( I = N-1, IL = []; I >= 0; I-- ) { |
for ( I = N-1, IL = []; I >= 0; I-- ) { |
| DB[I] = dp_ptod(B[I],V); |
DB[I] = dp_ptod(B[I],V); |
| IL = cons(I,IL); |
if ( DB[I] ) IL = cons(I,IL); |
| } |
} |
| return dp_dtop(dp_nf(IL,DP,DB,1),V); |
return dp_dtop(dp_nf(IL,DP,DB,1),V); |
| } |
} |
| Line 1044 def p_true_nf(P,B,V,O) { |
|
| Line 1133 def p_true_nf(P,B,V,O) { |
|
| N = length(B); DB = newvect(N); |
N = length(B); DB = newvect(N); |
| for ( I = N-1, IL = []; I >= 0; I-- ) { |
for ( I = N-1, IL = []; I >= 0; I-- ) { |
| DB[I] = dp_ptod(B[I],V); |
DB[I] = dp_ptod(B[I],V); |
| IL = cons(I,IL); |
if ( DB[I] ) IL = cons(I,IL); |
| } |
} |
| L = dp_true_nf(IL,DP,DB,1); |
L = dp_true_nf(IL,DP,DB,1); |
| return [dp_dtop(L[0],V),L[1]]; |
return [dp_dtop(L[0],V),L[1]]; |
| Line 1587 def check_trace(NF,NFIndex,HL) |
|
| Line 1676 def check_trace(NF,NFIndex,HL) |
|
| error("check_trace"); |
error("check_trace"); |
| } |
} |
| |
|
| |
/* |
| |
* Trace = [Input,[[j1,[[c,i,m,d],...]],[j2,[[...],...]],...]] |
| |
* if c != 0 |
| |
* g = 0 |
| |
* g = (c*g + m*gi)/d |
| |
* ... |
| |
* finally fj = g |
| |
*/ |
| |
|
| |
def show_trace(Trace,V) |
| |
{ |
| |
Input = Trace[0]; |
| |
for ( I = 0, T = Input; T != []; T = cdr(T), I++ ) { |
| |
print("F"+rtostr(I)+"=",0); |
| |
print(dp_dtop(car(T),V)); |
| |
} |
| |
Trace = cdr(Trace); |
| |
for ( T = Trace; T != []; T = cdr(T) ) { |
| |
HL = car(T); |
| |
J = car(HL); HL = HL[1]; |
| |
L = length(HL); |
| |
print("F"+rtostr(J)+"=",0); |
| |
for ( I = 0; I < L; I++ ) print("(",0); |
| |
for ( First = 1, S = HL; S != []; S = cdr(S) ) { |
| |
H = car(S); |
| |
|
| |
Coeff = H[0]; |
| |
Index = H[1]; |
| |
Monomial = H[2]; |
| |
Denominator = H[3]; |
| |
if ( First ) { |
| |
if ( Monomial != 1 ) { |
| |
print("(",0); |
| |
print(type(Monomial)==9?dp_dtop(Monomial,V):Monomial,0); |
| |
print(")*",0); |
| |
} |
| |
print("F"+rtostr(Index)+")",0); |
| |
} else { |
| |
if ( Coeff != 1 ) { |
| |
print("*(",0); print(Coeff,0); print(")",0); |
| |
} |
| |
print("+",0); |
| |
if ( Monomial != 1 ) { |
| |
print("(",0); |
| |
print(type(Monomial)==9?dp_dtop(Monomial,V):Monomial,0); |
| |
print(")*",0); |
| |
} |
| |
print("F"+rtostr(Index)+")",0); |
| |
if ( Denominator != 1 ) { |
| |
print("/",0); print(Denominator,0); |
| |
} |
| |
} |
| |
if ( First ) First = 0; |
| |
} |
| |
print(""); |
| |
} |
| |
} |
| |
|
| |
def generating_relation(Trace,V) |
| |
{ |
| |
Trace = cdr(Trace); |
| |
Tab = []; |
| |
for ( T = Trace; T != []; T = cdr(T) ) { |
| |
HL = car(T); |
| |
J = car(HL); HL = HL[1]; |
| |
L = length(HL); |
| |
LHS = strtov("f"+rtostr(J)); |
| |
Dn = 1; |
| |
for ( First = 1, S = HL; S != []; S = cdr(S) ) { |
| |
H = car(S); |
| |
|
| |
Coeff = H[0]; |
| |
Index = H[1]; |
| |
Monomial = type(H[2])==9?dp_dtop(H[2],V):H[2]; |
| |
Denominator = H[3]; |
| |
F = strtov("f"+rtostr(Index)); |
| |
for ( Z = Tab; Z != []; Z = cdr(Z) ) |
| |
if ( Z[0][0] == F ) break; |
| |
if ( Z != [] ) Value = Z[0][1]; |
| |
else Value = [F,1]; |
| |
if ( First ) { |
| |
RHS = Monomial*Value[0]; |
| |
Dn *= Value[1]; |
| |
} else { |
| |
RHS = RHS*Coeff*Value[1]+Dn*Value[0]*Monomial; |
| |
Dn = Value[1]*Dn*Denominator; |
| |
} |
| |
VVVV = tttttttt; |
| |
P = ptozp(Dn*VVVV+RHS); |
| |
RHS = coef(P,0,VVVV); |
| |
Dn = coef(P,1,VVVV); |
| |
if ( First ) First = 0; |
| |
} |
| |
Tab = cons([LHS,[RHS,Dn]],Tab); |
| |
} |
| |
return Tab; |
| |
} |
| |
|
| |
def generating_relation_mod(Trace,V,M) |
| |
{ |
| |
Trace = cdr(Trace); |
| |
Tab = []; |
| |
for ( T = Trace; T != []; T = cdr(T) ) { |
| |
HL = car(T); |
| |
J = car(HL); HL = HL[1]; |
| |
L = length(HL); |
| |
LHS = strtov("f"+rtostr(J)); |
| |
Dn = 1; |
| |
for ( First = 1, S = HL; S != []; S = cdr(S) ) { |
| |
H = car(S); |
| |
|
| |
Coeff = H[0]; |
| |
Index = H[1]; |
| |
Monomial = type(H[2])==9?dp_dtop(H[2],V):H[2]; |
| |
F = strtov("f"+rtostr(Index)); |
| |
for ( Z = Tab; Z != []; Z = cdr(Z) ) |
| |
if ( Z[0][0] == F ) break; |
| |
if ( Z != [] ) Value = Z[0][1]; |
| |
else Value = F; |
| |
if ( First ) { |
| |
RHS = (Monomial*Value)%M; |
| |
} else { |
| |
RHS = ((RHS*Coeff+Value*Monomial)*inv(H[3],M))%M; |
| |
} |
| |
if ( First ) First = 0; |
| |
} |
| |
Tab = cons([LHS,RHS],Tab); |
| |
} |
| |
return Tab; |
| |
} |
| /* |
/* |
| * realloc NFArray so that it can hold * an element as NFArray[Ind]. |
* realloc NFArray so that it can hold * an element as NFArray[Ind]. |
| */ |
*/ |