version 1.1, 1999/12/03 07:39:11 |
version 1.26, 2007/07/17 08:17:42 |
|
|
/* $OpenXM: OpenXM/src/asir99/lib/gr,v 1.1.1.1 1999/11/10 08:12:31 noro Exp $ */ |
/* |
|
* Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED |
|
* All rights reserved. |
|
* |
|
* FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, |
|
* non-exclusive and royalty-free license to use, copy, modify and |
|
* redistribute, solely for non-commercial and non-profit purposes, the |
|
* computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and |
|
* conditions of this Agreement. For the avoidance of doubt, you acquire |
|
* only a limited right to use the SOFTWARE hereunder, and FLL or any |
|
* third party developer retains all rights, including but not limited to |
|
* copyrights, in and to the SOFTWARE. |
|
* |
|
* (1) FLL does not grant you a license in any way for commercial |
|
* purposes. You may use the SOFTWARE only for non-commercial and |
|
* non-profit purposes only, such as academic, research and internal |
|
* business use. |
|
* (2) The SOFTWARE is protected by the Copyright Law of Japan and |
|
* international copyright treaties. If you make copies of the SOFTWARE, |
|
* with or without modification, as permitted hereunder, you shall affix |
|
* to all such copies of the SOFTWARE the above copyright notice. |
|
* (3) An explicit reference to this SOFTWARE and its copyright owner |
|
* shall be made on your publication or presentation in any form of the |
|
* results obtained by use of the SOFTWARE. |
|
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
|
* e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification |
|
* for such modification or the source code of the modified part of the |
|
* SOFTWARE. |
|
* |
|
* THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL |
|
* MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND |
|
* EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS |
|
* FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' |
|
* RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY |
|
* MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. |
|
* UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, |
|
* OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY |
|
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL |
|
* DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES |
|
* ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES |
|
* FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY |
|
* DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF |
|
* SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART |
|
* OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY |
|
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
|
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
|
* |
|
* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.25 2007/01/18 08:09:02 noro Exp $ |
|
*/ |
|
|
|
module gr $ |
|
/* Empty for now. It will be used in a future. */ |
|
endmodule $ |
|
|
extern INIT_COUNT,ITOR_FAIL$ |
extern INIT_COUNT,ITOR_FAIL$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
|
|
Line 78 def tolex_tl(G0,V,O,W,H) |
|
Line 131 def tolex_tl(G0,V,O,W,H) |
|
|
|
def tolex(G0,V,O,W) |
def tolex(G0,V,O,W) |
{ |
{ |
|
Procs = getopt(procs); |
|
|
TM = TE = TNF = 0; |
TM = TE = TNF = 0; |
N = length(V); HM = hmlist(G0,V,O); ZD = zero_dim(HM,V,O); |
N = length(V); HM = hmlist(G0,V,O); ZD = zero_dim(HM,V,O); |
if ( !ZD ) |
if ( ZD ) |
error("tolex : ideal is not zero-dimensional!"); |
MB = dp_mbase(map(dp_ptod,HM,V)); |
MB = dp_mbase(map(dp_ptod,HM,V)); |
else |
|
MB = 0; |
for ( J = 0; ; J++ ) { |
for ( J = 0; ; J++ ) { |
M = lprime(J); |
M = lprime(J); |
if ( !valid_modulus(HM,M) ) |
if ( !valid_modulus(HM,M) ) |
continue; |
continue; |
T0 = time()[0]; GM = tolexm(G0,V,O,W,M); TM += time()[0] - T0; |
T0 = time()[0]; |
dp_ord(2); |
if ( ZD ) { |
DL = map(dp_etov,map(dp_ht,map(dp_ptod,GM,W))); |
GM = tolexm(G0,V,O,W,M); |
D = newvect(N); TL = []; |
dp_ord(2); |
do |
DL = map(dp_etov,map(dp_ht,map(dp_ptod,GM,W))); |
TL = cons(dp_dtop(dp_vtoe(D),W),TL); |
D = newvect(N); TL = []; |
while ( nextm(D,DL,N) ); |
do |
L = npos_check(DL); NPOSV = L[0]; DIM = L[1]; |
TL = cons(dp_dtop(dp_vtoe(D),W),TL); |
T0 = time()[0]; NF = gennf(G0,TL,V,O,W[N-1],1)[0]; |
while ( nextm(D,DL,N) ); |
|
} else { |
|
HVN = "h"; |
|
WN = map(rtostr,W); |
|
while ( member(HVN,WN) ) HVN += "h"; |
|
HV = strtov(HVN); |
|
G0H = map(homogenize,G0,W,HV); |
|
GMH = nd_gr(G0H,append(W,[HV]),M,1); |
|
GMH=map(subst,GMH,HV,1); |
|
GM = nd_gr_postproc(GMH,W,M,2,0); |
|
dp_ord(2); |
|
for ( T = GM, S = 0; T != []; T = cdr(T) ) |
|
for ( D = dp_ptod(car(T),V); D; D = dp_rest(D) ) |
|
S += dp_ht(D); |
|
TL = dp_terms(S,V); |
|
} |
|
TM += time()[0] - T0; |
|
T0 = time()[0]; NF = gennf(G0,TL,V,O,W[N-1],ZD)[0]; |
TNF += time()[0] - T0; |
TNF += time()[0] - T0; |
T0 = time()[0]; |
T0 = time()[0]; |
R = tolex_main(V,O,NF,GM,M,MB); |
if ( type(Procs) != -1 ) |
|
R = tolex_d_main(V,O,NF,GM,M,MB,Procs); |
|
else |
|
R = tolex_main(V,O,NF,GM,M,MB); |
TE += time()[0] - T0; |
TE += time()[0] - T0; |
if ( R ) { |
if ( R ) { |
if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
Line 128 def tolex_gsl(G0,V,O,W) |
|
Line 204 def tolex_gsl(G0,V,O,W) |
|
while ( nextm(D,DL,N) ); |
while ( nextm(D,DL,N) ); |
L = npos_check(DL); NPOSV = L[0]; DIM = L[1]; |
L = npos_check(DL); NPOSV = L[0]; DIM = L[1]; |
if ( NPOSV >= 0 ) { |
if ( NPOSV >= 0 ) { |
|
if ( dp_gr_print() ) print("shape base"); |
V0 = W[NPOSV]; |
V0 = W[NPOSV]; |
T0 = time()[0]; NFL = gennf(G0,TL,V,O,V0,1); |
T0 = time()[0]; NFL = gennf(G0,TL,V,O,V0,1); |
TNF += time()[0] - T0; |
TNF += time()[0] - T0; |
Line 206 def tolex_gsl_main(G0,V,O,W,NFL,NPOSV,GM,M,MB) |
|
Line 283 def tolex_gsl_main(G0,V,O,W,NFL,NPOSV,GM,M,MB) |
|
R += B[0][K]*TERMS[K]; |
R += B[0][K]*TERMS[K]; |
LCM *= B[1]; |
LCM *= B[1]; |
SL = cons(cons(V1,[R,LCM]),SL); |
SL = cons(cons(V1,[R,LCM]),SL); |
print(["DN",B[1]]); |
if ( dp_gr_print() ) |
|
print(["DN",B[1]]); |
} |
} |
return SL; |
return SL; |
} |
} |
Line 217 def hen_ttob_gsl(LHS,RHS,TERMS,M) |
|
Line 295 def hen_ttob_gsl(LHS,RHS,TERMS,M) |
|
L1 = idiv(LCM,LDN); R1 = idiv(LCM,RDN); |
L1 = idiv(LCM,LDN); R1 = idiv(LCM,RDN); |
T0 = time()[0]; |
T0 = time()[0]; |
S = henleq_gsl(RHS[0],LHS[0]*L1,M); |
S = henleq_gsl(RHS[0],LHS[0]*L1,M); |
print(["henleq_gsl",time()[0]-T0]); |
if ( dp_gr_print() ) |
|
print(["henleq_gsl",time()[0]-T0]); |
N = length(TERMS); |
N = length(TERMS); |
return [S[0],S[1]*R1]; |
return [S[0],S[1]*R1]; |
} |
} |
Line 266 def dptov(P,W,MB) |
|
Line 345 def dptov(P,W,MB) |
|
|
|
def tolex_main(V,O,NF,GM,M,MB) |
def tolex_main(V,O,NF,GM,M,MB) |
{ |
{ |
DIM = length(MB); |
if ( MB ) { |
DV = newvect(DIM); |
PosDim = 0; |
|
DIM = length(MB); |
|
DV = newvect(DIM); |
|
} else |
|
PosDim = 1; |
for ( T = GM, SL = [], LCM = 1; T != []; T = cdr(T) ) { |
for ( T = GM, SL = [], LCM = 1; T != []; T = cdr(T) ) { |
S = p_terms(car(T),V,2); |
S = p_terms(car(T),V,2); |
|
if ( PosDim ) { |
|
MB = gather_nf_terms(S,NF,V,O); |
|
DV = newvect(length(MB)); |
|
} |
dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); |
dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); |
dp_ord(0); NHT = nf_tab_gsl(dp_ptod(LCM*car(S),V),NF); |
dp_ord(O); NHT = nf_tab_gsl(dp_ptod(LCM*car(S),V),NF); |
dptov(NHT[0],DV,MB); |
dptov(NHT[0],DV,MB); |
dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); |
dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); |
if ( !B ) |
if ( !B ) |
Line 282 def tolex_main(V,O,NF,GM,M,MB) |
|
Line 369 def tolex_main(V,O,NF,GM,M,MB) |
|
U += B[0][I-1]*S[I]; |
U += B[0][I-1]*S[I]; |
R = ptozp(U); |
R = ptozp(U); |
SL = cons(R,SL); |
SL = cons(R,SL); |
print(["DN",B[1]]); |
if ( dp_gr_print() ) |
|
print(["DN",B[1]]); |
} |
} |
return SL; |
return SL; |
} |
} |
|
|
|
def tolex_d_main(V,O,NF,GM,M,MB,Procs) |
|
{ |
|
map(ox_reset,Procs); |
|
/* register data in servers */ |
|
map(ox_cmo_rpc,Procs,"register_data_for_find_base",NF,V,O,MB,M); |
|
/* discard return value in stack */ |
|
map(ox_pop_cmo,Procs); |
|
Free = Procs; |
|
Busy = []; |
|
T = GM; |
|
SL = []; |
|
while ( T != [] || Busy != [] ){ |
|
if ( Free == [] || T == [] ) { |
|
/* someone is working; wait for data */ |
|
Ready = ox_select(Busy); |
|
Busy = setminus(Busy,Ready); |
|
Free = append(Ready,Free); |
|
for ( ; Ready != []; Ready = cdr(Ready) ) |
|
SL = cons(ox_get(car(Ready)),SL); |
|
} else { |
|
P = car(Free); |
|
Free = cdr(Free); |
|
Busy = cons(P,Busy); |
|
Template = car(T); |
|
T = cdr(T); |
|
ox_cmo_rpc(P,"find_base",Template); |
|
ox_push_cmd(P,262); /* 262 = OX_popCMO */ |
|
} |
|
} |
|
return SL; |
|
} |
|
|
|
struct find_base_data { NF,V,O,MB,M,PosDim,DV }$ |
|
extern Find_base$ |
|
|
|
def register_data_for_find_base(NF,V,O,MB,M) |
|
{ |
|
Find_base = newstruct(find_base_data); |
|
Find_base->NF = NF; |
|
Find_base->V = V; |
|
Find_base->O = O; |
|
Find_base->M = M; |
|
Find_base->MB = MB; |
|
|
|
if ( MB ) { |
|
Find_base->PosDim = 0; |
|
DIM = length(MB); |
|
Find_base->DV = newvect(DIM); |
|
} else |
|
Find_base->PosDim = 1; |
|
} |
|
|
|
def find_base(S) { |
|
NF = Find_base->NF; |
|
V = Find_base->V; |
|
O = Find_base->O; |
|
MB = Find_base->MB; |
|
M = Find_base->M; |
|
PosDim = Find_base->PosDim; |
|
DV = Find_base->DV; |
|
|
|
S = p_terms(S,V,2); |
|
if ( PosDim ) { |
|
MB = gather_nf_terms(S,NF,V,O); |
|
DV = newvect(length(MB)); |
|
} |
|
dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); |
|
dp_ord(O); NHT = nf_tab_gsl(dp_ptod(car(S),V),NF); |
|
dptov(NHT[0],DV,MB); |
|
dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); |
|
if ( !B ) |
|
return 0; |
|
Len = length(S); |
|
for ( U = B[1]*car(S), I = 1; I < Len; I++ ) |
|
U += B[0][I-1]*S[I]; |
|
R = ptozp(U); |
|
return R; |
|
} |
|
|
|
/* |
|
* NF = [Pairs,DN] |
|
* Pairs = [[NF1,T1],[NF2,T2],...] |
|
*/ |
|
|
|
def gather_nf_terms(S,NF,V,O) |
|
{ |
|
R = 0; |
|
for ( T = S; T != []; T = cdr(T) ) { |
|
DT = dp_ptod(car(T),V); |
|
for ( U = NF[0]; U != []; U = cdr(U) ) |
|
if ( car(U)[1] == DT ) { |
|
R += tpoly(dp_terms(car(U)[0],V)); |
|
break; |
|
} |
|
} |
|
return map(dp_ptod,p_terms(R,V,O),V); |
|
} |
|
|
def reduce_dn(L) |
def reduce_dn(L) |
{ |
{ |
NM = L[0]; DN = L[1]; V = vars(NM); |
NM = L[0]; DN = L[1]; V = vars(NM); |
Line 301 def minipoly(G0,V,O,P,V0) |
|
Line 487 def minipoly(G0,V,O,P,V0) |
|
if ( !zero_dim(hmlist(G0,V,O),V,O) ) |
if ( !zero_dim(hmlist(G0,V,O),V,O) ) |
error("tolex : ideal is not zero-dimensional!"); |
error("tolex : ideal is not zero-dimensional!"); |
|
|
|
Pin = P; |
|
P = ptozp(P); |
|
CP = sdiv(P,Pin); |
G1 = cons(V0-P,G0); |
G1 = cons(V0-P,G0); |
O1 = [[0,1],[O,length(V)]]; |
O1 = [[0,1],[O,length(V)]]; |
V1 = cons(V0,V); |
V1 = cons(V0,V); |
Line 321 def minipoly(G0,V,O,P,V0) |
|
Line 510 def minipoly(G0,V,O,P,V0) |
|
TL = cons(V0^J,TL); |
TL = cons(V0^J,TL); |
NF = gennf(G1,TL,V1,O1,V0,1)[0]; |
NF = gennf(G1,TL,V1,O1,V0,1)[0]; |
R = tolex_main(V1,O1,NF,[MP],M,MB); |
R = tolex_main(V1,O1,NF,[MP],M,MB); |
return R[0]; |
return ptozp(subst(R[0],V0,CP*V0)); |
} |
} |
} |
} |
|
|
Line 329 def minipoly(G0,V,O,P,V0) |
|
Line 518 def minipoly(G0,V,O,P,V0) |
|
|
|
def gennf(G,TL,V,O,V0,FLAG) |
def gennf(G,TL,V,O,V0,FLAG) |
{ |
{ |
|
F = dp_gr_flags(); |
|
for ( T = F; T != []; T = cdr(T) ) { |
|
Key = car(T); T = cdr(T); |
|
if ( Key == "Demand" ) { |
|
Dir = car(T); break; |
|
} |
|
} |
|
if ( Dir ) |
|
return gennf_demand(G,TL,V,O,V0,FLAG,Dir); |
N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
Line 351 def gennf(G,TL,V,O,V0,FLAG) |
|
Line 549 def gennf(G,TL,V,O,V0,FLAG) |
|
if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
print(".",2); |
print(".",2); |
} |
} |
print(""); |
if ( dp_gr_print() ) |
|
print(""); |
TTAB = time()[0]-T0; |
TTAB = time()[0]-T0; |
} |
} |
|
|
Line 379 def gennf(G,TL,V,O,V0,FLAG) |
|
Line 578 def gennf(G,TL,V,O,V0,FLAG) |
|
return [[map(adj_dn,H,LCM),LCM],PS,GI]; |
return [[map(adj_dn,H,LCM),LCM],PS,GI]; |
} |
} |
|
|
|
def gennf_demand(G,TL,V,O,V0,FLAG,Dir) |
|
{ |
|
N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
|
NTL = length(TL); |
|
for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
|
PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
|
} |
|
for ( I = 0, DTL = []; TL != []; TL = cdr(TL) ) |
|
DTL = cons(dp_ptod(car(TL),V),DTL); |
|
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
|
GI = cons(I,GI); |
|
|
|
USE_TAB = (FLAG != 0); |
|
if ( USE_TAB ) { |
|
T0 = time()[0]; |
|
MB = dp_mbase(HL); DIM = length(MB); |
|
U = dp_ptod(V0,V); |
|
UTAB = newvect(DIM); |
|
for ( I = 0; I < DIM; I++ ) { |
|
UTAB[I] = [MB[I],remove_cont(dp_true_nf(GI,U*MB[I],PS,1))]; |
|
if ( dp_gr_print() ) |
|
print(".",2); |
|
} |
|
if ( dp_gr_print() ) |
|
print(""); |
|
TTAB = time()[0]-T0; |
|
} |
|
|
|
T0 = time()[0]; |
|
for ( LCM = 1, Index = 0, H = []; DTL != []; Index++ ) { |
|
if ( dp_gr_print() ) |
|
print(".",2); |
|
T = car(DTL); DTL = cdr(DTL); |
|
if ( L = search_redble(T,H) ) { |
|
L = nf_load(Dir,L[0]); |
|
DD = dp_subd(T,L[1]); |
|
if ( USE_TAB && (DD == U) ) { |
|
NF = nf_tab(L[0],UTAB); |
|
NF = [NF[0],dp_hc(L[1])*NF[1]*T]; |
|
} else |
|
NF = nf(GI,L[0]*dp_subd(T,L[1]),dp_hc(L[1])*T,PS); |
|
} else |
|
NF = nf(GI,T,T,PS); |
|
NF = remove_cont(NF); |
|
nf_save(NF,Dir,Index); |
|
H = cons([Index,NF[1]],H); |
|
LCM = ilcm(LCM,dp_hc(NF[1])); |
|
} |
|
TNF = time()[0]-T0; |
|
if ( dp_gr_print() ) |
|
print("gennf(TAB="+rtostr(TTAB)+" NF="+rtostr(TNF)+")"); |
|
|
|
for ( I = 0; I < NTL; I++ ) { |
|
NF = nf_load(Dir,I); |
|
NF = adj_dn(NF,LCM); |
|
nf_save(NF,Dir,I); |
|
} |
|
for ( H = [], I = NTL-1; I >= 0; I-- ) |
|
H = cons(nf_load(Dir,I),H); |
|
return [[H,LCM],PS,GI]; |
|
} |
|
|
|
def nf_load(Dir,I) |
|
{ |
|
return bload(Dir+"/nf"+rtostr(I)); |
|
} |
|
|
|
def nf_save(NF,Dir,I) |
|
{ |
|
bsave(NF,Dir+"/nf"+rtostr(I)); |
|
} |
|
|
def adj_dn(P,D) |
def adj_dn(P,D) |
{ |
{ |
return [(idiv(D,dp_hc(P[1])))*P[0],dp_ht(P[1])]; |
return [(idiv(D,dp_hc(P[1])))*P[0],dp_ht(P[1])]; |
Line 410 def vtop(S,L,GSL) |
|
Line 681 def vtop(S,L,GSL) |
|
} |
} |
} |
} |
|
|
|
/* broken */ |
|
|
def leq_nf(TL,NF,LHS,V) |
def leq_nf(TL,NF,LHS,V) |
{ |
{ |
TLen = length(NF); |
TLen = length(NF); |
Line 506 def tolexm_main(PS,HL,V,W,M,FLAG) |
|
Line 779 def tolexm_main(PS,HL,V,W,M,FLAG) |
|
print(".",2); |
print(".",2); |
UTAB[I] = [MB[I],dp_nf_mod(GI,U*dp_mod(MB[I],M,[]),PS,1,M)]; |
UTAB[I] = [MB[I],dp_nf_mod(GI,U*dp_mod(MB[I],M,[]),PS,1,M)]; |
} |
} |
print(""); |
if ( dp_gr_print() ) |
|
print(""); |
T = dp_mod(dp_ptod(dp_dtop(dp_vtoe(D),W),V),M,[]); |
T = dp_mod(dp_ptod(dp_dtop(dp_vtoe(D),W),V),M,[]); |
H = G = [[T,T]]; |
H = G = [[T,T]]; |
DL = []; G2 = []; |
DL = []; G2 = []; |
Line 849 def p_nf(P,B,V,O) { |
|
Line 1123 def p_nf(P,B,V,O) { |
|
N = length(B); DB = newvect(N); |
N = length(B); DB = newvect(N); |
for ( I = N-1, IL = []; I >= 0; I-- ) { |
for ( I = N-1, IL = []; I >= 0; I-- ) { |
DB[I] = dp_ptod(B[I],V); |
DB[I] = dp_ptod(B[I],V); |
IL = cons(I,IL); |
if ( DB[I] ) IL = cons(I,IL); |
} |
} |
return dp_dtop(dp_nf(IL,DP,DB,1),V); |
return dp_dtop(dp_nf(IL,DP,DB,1),V); |
} |
} |
Line 859 def p_true_nf(P,B,V,O) { |
|
Line 1133 def p_true_nf(P,B,V,O) { |
|
N = length(B); DB = newvect(N); |
N = length(B); DB = newvect(N); |
for ( I = N-1, IL = []; I >= 0; I-- ) { |
for ( I = N-1, IL = []; I >= 0; I-- ) { |
DB[I] = dp_ptod(B[I],V); |
DB[I] = dp_ptod(B[I],V); |
IL = cons(I,IL); |
if ( DB[I] ) IL = cons(I,IL); |
} |
} |
L = dp_true_nf(IL,DP,DB,1); |
L = dp_true_nf(IL,DP,DB,1); |
return [dp_dtop(L[0],V),L[1]]; |
return [dp_dtop(L[0],V),L[1]]; |
} |
} |
|
|
|
def p_nf_mod(P,B,V,O,Mod) { |
|
setmod(Mod); |
|
dp_ord(O); DP = dp_mod(dp_ptod(P,V),Mod,[]); |
|
N = length(B); DB = newvect(N); |
|
for ( I = N-1, IL = []; I >= 0; I-- ) { |
|
DB[I] = dp_mod(dp_ptod(B[I],V),Mod,[]); |
|
IL = cons(I,IL); |
|
} |
|
return dp_dtop(dp_nf_mod(IL,DP,DB,1,Mod),V); |
|
} |
|
|
def p_terms(D,V,O) |
def p_terms(D,V,O) |
{ |
{ |
dp_ord(O); |
dp_ord(O); |
Line 882 def dp_terms(D,V) |
|
Line 1167 def dp_terms(D,V) |
|
|
|
def gb_comp(A,B) |
def gb_comp(A,B) |
{ |
{ |
for ( T = A; T != []; T = cdr(T) ) { |
LA = length(A); |
for ( S = B, M = car(T), N = -M; S != []; S = cdr(S) ) |
LB = length(B); |
if ( car(S) == M || car(S) == N ) |
if ( LA != LB ) |
break; |
return 0; |
if ( S == [] ) |
A = newvect(LA,A); |
|
B = newvect(LB,B); |
|
for ( I = 0; I < LA; I++ ) |
|
A[I] *= headsgn(A[I]); |
|
for ( I = 0; I < LB; I++ ) |
|
B[I] *= headsgn(B[I]); |
|
A1 = qsort(A); |
|
B1 = qsort(B); |
|
for ( I = 0; I < LA; I++ ) |
|
if ( A1[I] != B1[I] && A1[I] != -B1[I] ) |
break; |
break; |
} |
return I == LA ? 1 : 0; |
return T == [] ? 1 : 0; |
|
} |
} |
|
|
def zero_dim(G,V,O) { |
def zero_dim(G,V,O) { |
Line 1086 def henleq_gsl(L,B,MOD) |
|
Line 1379 def henleq_gsl(L,B,MOD) |
|
if ( !COUNT ) |
if ( !COUNT ) |
COUNT = 1; |
COUNT = 1; |
MOD2 = idiv(MOD,2); |
MOD2 = idiv(MOD,2); |
for ( I = 0, C = BB, X = 0, PK = 1, CCC = 0, ITOR_FAIL = -1; ; |
X = newvect(size(AA)[0]); |
|
for ( I = 0, C = BB, PK = 1, CCC = 0, ITOR_FAIL = -1; ; |
I++, PK *= MOD ) { |
I++, PK *= MOD ) { |
if ( zerovector(C) ) |
if ( zerovector(C) ) |
if ( zerovector(RESTA*X+RESTB) ) { |
if ( zerovector(RESTA*X+RESTB) ) { |
Line 1258 def vs_dim(G,V,O) |
|
Line 1552 def vs_dim(G,V,O) |
|
error("vs_dim : ideal is not zero-dimensional!"); |
error("vs_dim : ideal is not zero-dimensional!"); |
} |
} |
|
|
def dgr(G,V,O,P) |
def dgr(G,V,O) |
{ |
{ |
|
P = getopt(proc); |
|
if ( type(P) == -1 ) |
|
return gr(G,V,O); |
P0 = P[0]; P1 = P[1]; P = [P0,P1]; |
P0 = P[0]; P1 = P[1]; P = [P0,P1]; |
flush(P0); flush(P1); |
map(ox_reset,P); |
rpc(P0,"dp_gr_main",G,V,0,1,O); |
ox_cmo_rpc(P0,"dp_gr_main",G,V,0,1,O); |
rpc(P1,"dp_gr_main",G,V,1,1,O); |
ox_cmo_rpc(P1,"dp_gr_main",G,V,1,1,O); |
F = select(P); |
map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ |
R = rpcrecv(F[0]); flush(P0); flush(P1); |
F = ox_select(P); |
return R; |
R = ox_get(F[0]); |
|
if ( F[0] == P0 ) { |
|
Win = "nonhomo"; |
|
Lose = P1; |
|
} else { |
|
Win = "homo"; |
|
Lose = P0; |
|
} |
|
ox_reset(Lose); |
|
return [Win,R]; |
} |
} |
|
|
|
/* competitive Gbase computation : F4 vs. Bucbberger */ |
|
/* P : process list */ |
|
|
|
def dgrf4mod(G,V,M,O) |
|
{ |
|
P = getopt(proc); |
|
if ( type(P) == -1 ) |
|
return dp_f4_mod_main(G,V,M,O); |
|
P0 = P[0]; P1 = P[1]; P = [P0,P1]; |
|
map(ox_reset,P); |
|
ox_cmo_rpc(P0,"dp_f4_mod_main",G,V,M,O); |
|
ox_cmo_rpc(P1,"dp_gr_mod_main",G,V,0,M,O); |
|
map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ |
|
F = ox_select(P); |
|
R = ox_get(F[0]); |
|
if ( F[0] == P0 ) { |
|
Win = "F4"; |
|
Lose = P1; |
|
} else { |
|
Win = "Buchberger"; |
|
Lose = P0; |
|
} |
|
ox_reset(Lose); |
|
return [Win,R]; |
|
} |
|
|
/* functions for rpc */ |
/* functions for rpc */ |
|
|
def register_matrix(M) |
def register_matrix(M) |
Line 1294 def r_ttob_gsl(L,M) |
|
Line 1626 def r_ttob_gsl(L,M) |
|
def get_matrix() |
def get_matrix() |
{ |
{ |
REMOTE_MATRIX; |
REMOTE_MATRIX; |
|
} |
|
|
|
extern NFArray$ |
|
|
|
/* |
|
* HL = [[c,i,m,d],...] |
|
* if c != 0 |
|
* g = 0 |
|
* g = (c*g + m*gi)/d |
|
* ... |
|
* finally compare g with NF |
|
* if g == NF then NFArray[NFIndex] = g |
|
* |
|
* if c = 0 then HL consists of single history [0,i,0,0], |
|
* which means that dehomogenization of NFArray[i] should be |
|
* eqall to NF. |
|
*/ |
|
|
|
def check_trace(NF,NFIndex,HL) |
|
{ |
|
if ( !car(HL)[0] ) { |
|
/* dehomogenization */ |
|
DH = dp_dehomo(NFArray[car(HL)[1]]); |
|
if ( NF == DH ) { |
|
realloc_NFArray(NFIndex); |
|
NFArray[NFIndex] = NF; |
|
return 0; |
|
} else |
|
error("check_trace(dehomo)"); |
|
} |
|
|
|
for ( G = 0, T = HL; T != []; T = cdr(T) ) { |
|
H = car(T); |
|
|
|
Coeff = H[0]; |
|
Index = H[1]; |
|
Monomial = H[2]; |
|
Denominator = H[3]; |
|
|
|
Reducer = NFArray[Index]; |
|
G = (Coeff*G+Monomial*Reducer)/Denominator; |
|
} |
|
if ( NF == G ) { |
|
realloc_NFArray(NFIndex); |
|
NFArray[NFIndex] = NF; |
|
return 0; |
|
} else |
|
error("check_trace"); |
|
} |
|
|
|
/* |
|
* Trace = [Input,[[j1,[[c,i,m,d],...]],[j2,[[...],...]],...]] |
|
* if c != 0 |
|
* g = 0 |
|
* g = (c*g + m*gi)/d |
|
* ... |
|
* finally fj = g |
|
*/ |
|
|
|
def show_trace(Trace,V) |
|
{ |
|
Input = Trace[0]; |
|
for ( I = 0, T = Input; T != []; T = cdr(T), I++ ) { |
|
print("F"+rtostr(I)+"=",0); |
|
print(dp_dtop(car(T),V)); |
|
} |
|
Trace = cdr(Trace); |
|
for ( T = Trace; T != []; T = cdr(T) ) { |
|
HL = car(T); |
|
J = car(HL); HL = HL[1]; |
|
L = length(HL); |
|
print("F"+rtostr(J)+"=",0); |
|
for ( I = 0; I < L; I++ ) print("(",0); |
|
for ( First = 1, S = HL; S != []; S = cdr(S) ) { |
|
H = car(S); |
|
|
|
Coeff = H[0]; |
|
Index = H[1]; |
|
Monomial = H[2]; |
|
Denominator = H[3]; |
|
if ( First ) { |
|
if ( Monomial != 1 ) { |
|
print("(",0); |
|
print(type(Monomial)==9?dp_dtop(Monomial,V):Monomial,0); |
|
print(")*",0); |
|
} |
|
print("F"+rtostr(Index)+")",0); |
|
} else { |
|
if ( Coeff != 1 ) { |
|
print("*(",0); print(Coeff,0); print(")",0); |
|
} |
|
print("+",0); |
|
if ( Monomial != 1 ) { |
|
print("(",0); |
|
print(type(Monomial)==9?dp_dtop(Monomial,V):Monomial,0); |
|
print(")*",0); |
|
} |
|
print("F"+rtostr(Index)+")",0); |
|
if ( Denominator != 1 ) { |
|
print("/",0); print(Denominator,0); |
|
} |
|
} |
|
if ( First ) First = 0; |
|
} |
|
print(""); |
|
} |
|
} |
|
|
|
def generating_relation(Trace,V) |
|
{ |
|
Trace = cdr(Trace); |
|
Tab = []; |
|
for ( T = Trace; T != []; T = cdr(T) ) { |
|
HL = car(T); |
|
J = car(HL); HL = HL[1]; |
|
L = length(HL); |
|
LHS = strtov("f"+rtostr(J)); |
|
Dn = 1; |
|
for ( First = 1, S = HL; S != []; S = cdr(S) ) { |
|
H = car(S); |
|
|
|
Coeff = H[0]; |
|
Index = H[1]; |
|
Monomial = type(H[2])==9?dp_dtop(H[2],V):H[2]; |
|
Denominator = H[3]; |
|
F = strtov("f"+rtostr(Index)); |
|
for ( Z = Tab; Z != []; Z = cdr(Z) ) |
|
if ( Z[0][0] == F ) break; |
|
if ( Z != [] ) Value = Z[0][1]; |
|
else Value = [F,1]; |
|
if ( First ) { |
|
RHS = Monomial*Value[0]; |
|
Dn *= Value[1]; |
|
} else { |
|
RHS = RHS*Coeff*Value[1]+Dn*Value[0]*Monomial; |
|
Dn = Value[1]*Dn*Denominator; |
|
} |
|
VVVV = tttttttt; |
|
P = ptozp(Dn*VVVV+RHS); |
|
RHS = coef(P,0,VVVV); |
|
Dn = coef(P,1,VVVV); |
|
if ( First ) First = 0; |
|
} |
|
Tab = cons([LHS,[RHS,Dn]],Tab); |
|
} |
|
return Tab; |
|
} |
|
|
|
def generating_relation_mod(Trace,V,M) |
|
{ |
|
Trace = cdr(Trace); |
|
Tab = []; |
|
for ( T = Trace; T != []; T = cdr(T) ) { |
|
HL = car(T); |
|
J = car(HL); HL = HL[1]; |
|
L = length(HL); |
|
LHS = strtov("f"+rtostr(J)); |
|
Dn = 1; |
|
for ( First = 1, S = HL; S != []; S = cdr(S) ) { |
|
H = car(S); |
|
|
|
Coeff = H[0]; |
|
Index = H[1]; |
|
Monomial = type(H[2])==9?dp_dtop(H[2],V):H[2]; |
|
F = strtov("f"+rtostr(Index)); |
|
for ( Z = Tab; Z != []; Z = cdr(Z) ) |
|
if ( Z[0][0] == F ) break; |
|
if ( Z != [] ) Value = Z[0][1]; |
|
else Value = F; |
|
if ( First ) { |
|
RHS = (Monomial*Value)%M; |
|
} else { |
|
RHS = ((RHS*Coeff+Value*Monomial)*inv(H[3],M))%M; |
|
} |
|
if ( First ) First = 0; |
|
} |
|
Tab = cons([LHS,RHS],Tab); |
|
} |
|
return Tab; |
|
} |
|
/* |
|
* realloc NFArray so that it can hold * an element as NFArray[Ind]. |
|
*/ |
|
|
|
def realloc_NFArray(Ind) |
|
{ |
|
if ( Ind == size(NFArray)[0] ) { |
|
New = newvect(Ind + 100); |
|
for ( I = 0; I < Ind; I++ ) |
|
New[I] = NFArray[I]; |
|
NFArray = New; |
|
} |
|
} |
|
|
|
/* |
|
* create NFArray and initialize it by List. |
|
*/ |
|
|
|
def register_input(List) |
|
{ |
|
Len = length(List); |
|
NFArray = newvect(Len+100,List); |
|
} |
|
|
|
/* |
|
tracetogen(): preliminary version |
|
|
|
dp_gr_main() returns [GB,GBIndex,Trace]. |
|
GB : groebner basis |
|
GBIndex : IndexList (corresponding to Trace) |
|
Trace : [InputList,Trace0,Trace1,...] |
|
TraceI : [Index,TraceList] |
|
TraceList : [[Coef,Index,Monomial,Denominator],...] |
|
Poly <- 0 |
|
Poly <- (Coef*Poly+Monomial*PolyList[Index])/Denominator |
|
*/ |
|
|
|
def tracetogen(G) |
|
{ |
|
GB = G[0]; GBIndex = G[1]; Trace = G[2]; |
|
|
|
InputList = Trace[0]; |
|
Trace = cdr(Trace); |
|
|
|
/* number of initial basis */ |
|
Nini = length(InputList); |
|
|
|
/* number of generated basis */ |
|
Ngen = length(Trace); |
|
|
|
N = Nini + Ngen; |
|
|
|
/* stores traces */ |
|
Tr = vector(N); |
|
|
|
/* stores coeffs */ |
|
Coef = vector(N); |
|
|
|
/* XXX create dp_ptod(1,V) */ |
|
HT = dp_ht(InputList[0]); |
|
One = dp_subd(HT,HT); |
|
|
|
for ( I = 0; I < Nini; I++ ) { |
|
Tr[I] = [1,I,One,1]; |
|
C = vector(Nini); |
|
C[I] = One; |
|
Coef[I] = C; |
|
} |
|
for ( ; I < N; I++ ) |
|
Tr[I] = Trace[I-Nini][1]; |
|
|
|
for ( T = GBIndex; T != []; T = cdr(T) ) |
|
compute_coef_by_trace(car(T),Tr,Coef); |
|
return Coef; |
|
} |
|
|
|
def compute_coef_by_trace(I,Tr,Coef) |
|
{ |
|
if ( Coef[I] ) |
|
return; |
|
|
|
/* XXX */ |
|
Nini = size(Coef[0])[0]; |
|
|
|
/* initialize coef vector */ |
|
CI = vector(Nini); |
|
|
|
for ( T = Tr[I]; T != []; T = cdr(T) ) { |
|
/* Trace = [Coef,Index,Monomial,Denominator] */ |
|
Trace = car(T); |
|
C = Trace[0]; |
|
Ind = Trace[1]; |
|
Mon = Trace[2]; |
|
Den = Trace[3]; |
|
if ( !Coef[Ind] ) |
|
compute_coef_by_trace(Ind,Tr,Coef); |
|
|
|
/* XXX */ |
|
CT = newvect(Nini); |
|
for ( J = 0; J < Nini; J++ ) |
|
CT[J] = (C*CI[J]+Mon*Coef[Ind][J])/Den; |
|
CI = CT; |
|
} |
|
Coef[I] = CI; |
|
} |
|
|
|
extern Gbcheck_DP,Gbcheck_IL$ |
|
|
|
def register_data_for_gbcheck(DPL) |
|
{ |
|
for ( IL = [], I = length(DPL)-1; I >= 0; I-- ) |
|
IL = cons(I,IL); |
|
Gbcheck_DP = newvect(length(DPL),DPL); |
|
Gbcheck_IL = IL; |
|
} |
|
|
|
def sp_nf_for_gbcheck(Pair) |
|
{ |
|
SP = dp_sp(Gbcheck_DP[Pair[0]],Gbcheck_DP[Pair[1]]); |
|
return dp_nf(Gbcheck_IL,SP,Gbcheck_DP,1); |
|
} |
|
|
|
def gbcheck(B,V,O) |
|
{ |
|
dp_ord(O); |
|
D = map(dp_ptod,B,V); |
|
L = dp_gr_checklist(D,length(V)); |
|
DP = L[0]; Plist = L[1]; |
|
for ( IL = [], I = size(DP)[0]-1; I >= 0; I-- ) |
|
IL = cons(I,IL); |
|
Procs = getopt(proc); |
|
if ( type(Procs) == 4 ) { |
|
map(ox_reset,Procs); |
|
/* register DP in servers */ |
|
map(ox_cmo_rpc,Procs,"register_data_for_gbcheck",vtol(DP)); |
|
/* discard return value in stack */ |
|
map(ox_pop_cmo,Procs); |
|
Free = Procs; |
|
Busy = []; |
|
T = Plist; |
|
while ( T != [] || Busy != [] ){ |
|
if ( Free == [] || T == [] ) { |
|
/* someone is working; wait for data */ |
|
Ready = ox_select(Busy); |
|
Busy = setminus(Busy,Ready); |
|
Free = append(Ready,Free); |
|
for ( ; Ready != []; Ready = cdr(Ready) ) { |
|
if ( ox_get(car(Ready)) ) { |
|
map(ox_reset,Procs); |
|
return 0; |
|
} |
|
} |
|
} else { |
|
P = car(Free); |
|
Free = cdr(Free); |
|
Busy = cons(P,Busy); |
|
Pair = car(T); |
|
T = cdr(T); |
|
ox_cmo_rpc(P,"sp_nf_for_gbcheck",Pair); |
|
ox_push_cmd(P,262); /* 262 = OX_popCMO */ |
|
} |
|
} |
|
map(ox_reset,Procs); |
|
return 1; |
|
} else { |
|
for ( T = Plist; T != []; T = cdr(T) ) { |
|
Pair = T[0]; |
|
SP = dp_sp(DP[Pair[0]],DP[Pair[1]]); |
|
if ( dp_nf(IL,SP,DP,1) ) |
|
return 0; |
|
} |
|
return 1; |
|
} |
} |
} |
end$ |
end$ |