| version 1.20, 2004/07/21 05:12:29 |
version 1.21, 2005/08/02 07:21:48 |
|
|
| * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| * |
* |
| * $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.19 2003/10/20 00:58:47 takayama Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.20 2004/07/21 05:12:29 noro Exp $ |
| */ |
*/ |
| |
|
| module gr $ |
module gr $ |
| Line 510 def minipoly(G0,V,O,P,V0) |
|
| Line 510 def minipoly(G0,V,O,P,V0) |
|
| |
|
| def gennf(G,TL,V,O,V0,FLAG) |
def gennf(G,TL,V,O,V0,FLAG) |
| { |
{ |
| |
F = dp_gr_flags(); |
| |
for ( T = F; T != []; T = cdr(T) ) { |
| |
Key = car(T); T = cdr(T); |
| |
if ( Key == "Demand" ) { |
| |
Dir = car(T); break; |
| |
} |
| |
} |
| |
if ( Dir ) |
| |
return gennf_demand(G,TL,V,O,V0,FLAG,Dir); |
| N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
| for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
| PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
| Line 559 def gennf(G,TL,V,O,V0,FLAG) |
|
| Line 568 def gennf(G,TL,V,O,V0,FLAG) |
|
| if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
| print("gennf(TAB="+rtostr(TTAB)+" NF="+rtostr(TNF)+")"); |
print("gennf(TAB="+rtostr(TTAB)+" NF="+rtostr(TNF)+")"); |
| return [[map(adj_dn,H,LCM),LCM],PS,GI]; |
return [[map(adj_dn,H,LCM),LCM],PS,GI]; |
| |
} |
| |
|
| |
def gennf_demand(G,TL,V,O,V0,FLAG,Dir) |
| |
{ |
| |
N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
| |
NTL = length(TL); |
| |
for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
| |
PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
| |
} |
| |
for ( I = 0, DTL = []; TL != []; TL = cdr(TL) ) |
| |
DTL = cons(dp_ptod(car(TL),V),DTL); |
| |
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
| |
GI = cons(I,GI); |
| |
|
| |
USE_TAB = (FLAG != 0); |
| |
if ( USE_TAB ) { |
| |
T0 = time()[0]; |
| |
MB = dp_mbase(HL); DIM = length(MB); |
| |
U = dp_ptod(V0,V); |
| |
UTAB = newvect(DIM); |
| |
for ( I = 0; I < DIM; I++ ) { |
| |
UTAB[I] = [MB[I],remove_cont(dp_true_nf(GI,U*MB[I],PS,1))]; |
| |
if ( dp_gr_print() ) |
| |
print(".",2); |
| |
} |
| |
if ( dp_gr_print() ) |
| |
print(""); |
| |
TTAB = time()[0]-T0; |
| |
} |
| |
|
| |
T0 = time()[0]; |
| |
for ( LCM = 1, Index = 0, H = []; DTL != []; Index++ ) { |
| |
if ( dp_gr_print() ) |
| |
print(".",2); |
| |
T = car(DTL); DTL = cdr(DTL); |
| |
if ( L = search_redble(T,H) ) { |
| |
L = nf_load(Dir,L[0]); |
| |
DD = dp_subd(T,L[1]); |
| |
if ( USE_TAB && (DD == U) ) { |
| |
NF = nf_tab(L[0],UTAB); |
| |
NF = [NF[0],dp_hc(L[1])*NF[1]*T]; |
| |
} else |
| |
NF = nf(GI,L[0]*dp_subd(T,L[1]),dp_hc(L[1])*T,PS); |
| |
} else |
| |
NF = nf(GI,T,T,PS); |
| |
NF = remove_cont(NF); |
| |
nf_save(NF,Dir,Index); |
| |
H = cons([Index,NF[1]],H); |
| |
LCM = ilcm(LCM,dp_hc(NF[1])); |
| |
} |
| |
TNF = time()[0]-T0; |
| |
if ( dp_gr_print() ) |
| |
print("gennf(TAB="+rtostr(TTAB)+" NF="+rtostr(TNF)+")"); |
| |
|
| |
for ( I = 0; I < NTL; I++ ) { |
| |
NF = nf_load(Dir,I); |
| |
NF = adj_dn(NF,LCM); |
| |
nf_save(NF,Dir,I); |
| |
} |
| |
for ( H = [], I = NTL-1; I >= 0; I-- ) |
| |
H = cons(nf_load(Dir,I),H); |
| |
return [[H,LCM],PS,GI]; |
| |
} |
| |
|
| |
def nf_load(Dir,I) |
| |
{ |
| |
return bload(Dir+"/nf"+rtostr(I)); |
| |
} |
| |
|
| |
def nf_save(NF,Dir,I) |
| |
{ |
| |
bsave(NF,Dir+"/nf"+rtostr(I)); |
| } |
} |
| |
|
| def adj_dn(P,D) |
def adj_dn(P,D) |