| version 1.15, 2002/06/12 08:19:04 |
version 1.20, 2004/07/21 05:12:29 |
|
|
| * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| * |
* |
| * $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.14 2001/11/19 01:40:05 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.19 2003/10/20 00:58:47 takayama Exp $ |
| */ |
*/ |
| |
|
| |
module gr $ |
| |
/* Empty for now. It will be used in a future. */ |
| |
endmodule $ |
| |
|
| extern INIT_COUNT,ITOR_FAIL$ |
extern INIT_COUNT,ITOR_FAIL$ |
| extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
| |
|
| Line 126 def tolex_tl(G0,V,O,W,H) |
|
| Line 131 def tolex_tl(G0,V,O,W,H) |
|
| |
|
| def tolex(G0,V,O,W) |
def tolex(G0,V,O,W) |
| { |
{ |
| |
Procs = getopt(procs); |
| |
|
| TM = TE = TNF = 0; |
TM = TE = TNF = 0; |
| N = length(V); HM = hmlist(G0,V,O); ZD = zero_dim(HM,V,O); |
N = length(V); HM = hmlist(G0,V,O); ZD = zero_dim(HM,V,O); |
| if ( !ZD ) |
if ( ZD ) |
| error("tolex : ideal is not zero-dimensional!"); |
MB = dp_mbase(map(dp_ptod,HM,V)); |
| MB = dp_mbase(map(dp_ptod,HM,V)); |
else |
| |
MB = 0; |
| for ( J = 0; ; J++ ) { |
for ( J = 0; ; J++ ) { |
| M = lprime(J); |
M = lprime(J); |
| if ( !valid_modulus(HM,M) ) |
if ( !valid_modulus(HM,M) ) |
| continue; |
continue; |
| T0 = time()[0]; GM = tolexm(G0,V,O,W,M); TM += time()[0] - T0; |
T0 = time()[0]; |
| dp_ord(2); |
if ( ZD ) { |
| DL = map(dp_etov,map(dp_ht,map(dp_ptod,GM,W))); |
GM = tolexm(G0,V,O,W,M); |
| D = newvect(N); TL = []; |
dp_ord(2); |
| do |
DL = map(dp_etov,map(dp_ht,map(dp_ptod,GM,W))); |
| TL = cons(dp_dtop(dp_vtoe(D),W),TL); |
D = newvect(N); TL = []; |
| while ( nextm(D,DL,N) ); |
do |
| L = npos_check(DL); NPOSV = L[0]; DIM = L[1]; |
TL = cons(dp_dtop(dp_vtoe(D),W),TL); |
| T0 = time()[0]; NF = gennf(G0,TL,V,O,W[N-1],1)[0]; |
while ( nextm(D,DL,N) ); |
| |
} else { |
| |
GM = dp_gr_mod_main(G0,W,0,M,2); |
| |
dp_ord(2); |
| |
for ( T = GM, S = 0; T != []; T = cdr(T) ) |
| |
for ( D = dp_ptod(car(T),V); D; D = dp_rest(D) ) |
| |
S += dp_ht(D); |
| |
TL = dp_terms(S,V); |
| |
} |
| |
TM += time()[0] - T0; |
| |
T0 = time()[0]; NF = gennf(G0,TL,V,O,W[N-1],ZD)[0]; |
| TNF += time()[0] - T0; |
TNF += time()[0] - T0; |
| T0 = time()[0]; |
T0 = time()[0]; |
| R = tolex_main(V,O,NF,GM,M,MB); |
if ( type(Procs) != -1 ) |
| |
R = tolex_d_main(V,O,NF,GM,M,MB,Procs); |
| |
else |
| |
R = tolex_main(V,O,NF,GM,M,MB); |
| TE += time()[0] - T0; |
TE += time()[0] - T0; |
| if ( R ) { |
if ( R ) { |
| if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
| Line 316 def dptov(P,W,MB) |
|
| Line 337 def dptov(P,W,MB) |
|
| |
|
| def tolex_main(V,O,NF,GM,M,MB) |
def tolex_main(V,O,NF,GM,M,MB) |
| { |
{ |
| DIM = length(MB); |
if ( MB ) { |
| DV = newvect(DIM); |
PosDim = 0; |
| |
DIM = length(MB); |
| |
DV = newvect(DIM); |
| |
} else |
| |
PosDim = 1; |
| for ( T = GM, SL = [], LCM = 1; T != []; T = cdr(T) ) { |
for ( T = GM, SL = [], LCM = 1; T != []; T = cdr(T) ) { |
| S = p_terms(car(T),V,2); |
S = p_terms(car(T),V,2); |
| |
if ( PosDim ) { |
| |
MB = gather_nf_terms(S,NF,V,O); |
| |
DV = newvect(length(MB)); |
| |
} |
| dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); |
dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); |
| dp_ord(0); NHT = nf_tab_gsl(dp_ptod(LCM*car(S),V),NF); |
dp_ord(O); NHT = nf_tab_gsl(dp_ptod(LCM*car(S),V),NF); |
| dptov(NHT[0],DV,MB); |
dptov(NHT[0],DV,MB); |
| dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); |
dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); |
| if ( !B ) |
if ( !B ) |
| Line 338 def tolex_main(V,O,NF,GM,M,MB) |
|
| Line 367 def tolex_main(V,O,NF,GM,M,MB) |
|
| return SL; |
return SL; |
| } |
} |
| |
|
| |
def tolex_d_main(V,O,NF,GM,M,MB,Procs) |
| |
{ |
| |
map(ox_reset,Procs); |
| |
/* register data in servers */ |
| |
map(ox_cmo_rpc,Procs,"register_data_for_find_base",NF,V,O,MB,M); |
| |
/* discard return value in stack */ |
| |
map(ox_pop_cmo,Procs); |
| |
Free = Procs; |
| |
Busy = []; |
| |
T = GM; |
| |
SL = []; |
| |
while ( T != [] || Busy != [] ){ |
| |
if ( Free == [] || T == [] ) { |
| |
/* someone is working; wait for data */ |
| |
Ready = ox_select(Busy); |
| |
Busy = setminus(Busy,Ready); |
| |
Free = append(Ready,Free); |
| |
for ( ; Ready != []; Ready = cdr(Ready) ) |
| |
SL = cons(ox_get(car(Ready)),SL); |
| |
} else { |
| |
P = car(Free); |
| |
Free = cdr(Free); |
| |
Busy = cons(P,Busy); |
| |
Template = car(T); |
| |
T = cdr(T); |
| |
ox_cmo_rpc(P,"find_base",Template); |
| |
ox_push_cmd(P,262); /* 262 = OX_popCMO */ |
| |
} |
| |
} |
| |
return SL; |
| |
} |
| |
|
| |
struct find_base_data { NF,V,O,MB,M,PosDim,DV }$ |
| |
extern Find_base$ |
| |
|
| |
def register_data_for_find_base(NF,V,O,MB,M) |
| |
{ |
| |
Find_base = newstruct(find_base_data); |
| |
Find_base->NF = NF; |
| |
Find_base->V = V; |
| |
Find_base->O = O; |
| |
Find_base->M = M; |
| |
Find_base->MB = MB; |
| |
|
| |
if ( MB ) { |
| |
Find_base->PosDim = 0; |
| |
DIM = length(MB); |
| |
Find_base->DV = newvect(DIM); |
| |
} else |
| |
Find_base->PosDim = 1; |
| |
} |
| |
|
| |
def find_base(S) { |
| |
NF = Find_base->NF; |
| |
V = Find_base->V; |
| |
O = Find_base->O; |
| |
MB = Find_base->MB; |
| |
M = Find_base->M; |
| |
PosDim = Find_base->PosDim; |
| |
DV = Find_base->DV; |
| |
|
| |
S = p_terms(S,V,2); |
| |
if ( PosDim ) { |
| |
MB = gather_nf_terms(S,NF,V,O); |
| |
DV = newvect(length(MB)); |
| |
} |
| |
dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); |
| |
dp_ord(O); NHT = nf_tab_gsl(dp_ptod(car(S),V),NF); |
| |
dptov(NHT[0],DV,MB); |
| |
dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); |
| |
if ( !B ) |
| |
return 0; |
| |
Len = length(S); |
| |
for ( U = B[1]*car(S), I = 1; I < Len; I++ ) |
| |
U += B[0][I-1]*S[I]; |
| |
R = ptozp(U); |
| |
return R; |
| |
} |
| |
|
| |
/* |
| |
* NF = [Pairs,DN] |
| |
* Pairs = [[NF1,T1],[NF2,T2],...] |
| |
*/ |
| |
|
| |
def gather_nf_terms(S,NF,V,O) |
| |
{ |
| |
R = 0; |
| |
for ( T = S; T != []; T = cdr(T) ) { |
| |
DT = dp_ptod(car(T),V); |
| |
for ( U = NF[0]; U != []; U = cdr(U) ) |
| |
if ( car(U)[1] == DT ) { |
| |
R += tpoly(dp_terms(car(U)[0],V)); |
| |
break; |
| |
} |
| |
} |
| |
return map(dp_ptod,p_terms(R,V,O),V); |
| |
} |
| |
|
| def reduce_dn(L) |
def reduce_dn(L) |
| { |
{ |
| NM = L[0]; DN = L[1]; V = vars(NM); |
NM = L[0]; DN = L[1]; V = vars(NM); |
| Line 465 def vtop(S,L,GSL) |
|
| Line 592 def vtop(S,L,GSL) |
|
| } |
} |
| } |
} |
| |
|
| |
/* broken */ |
| |
|
| def leq_nf(TL,NF,LHS,V) |
def leq_nf(TL,NF,LHS,V) |
| { |
{ |
| TLen = length(NF); |
TLen = length(NF); |
| Line 953 def gb_comp(A,B) |
|
| Line 1082 def gb_comp(A,B) |
|
| LB = length(B); |
LB = length(B); |
| if ( LA != LB ) |
if ( LA != LB ) |
| return 0; |
return 0; |
| A1 = qsort(newvect(LA,A)); |
A = newvect(LA,A); |
| B1 = qsort(newvect(LB,B)); |
B = newvect(LB,B); |
| for ( I = 0; I < LA; I++ ) |
for ( I = 0; I < LA; I++ ) |
| |
A[I] *= headsgn(A[I]); |
| |
for ( I = 0; I < LB; I++ ) |
| |
B[I] *= headsgn(B[I]); |
| |
A1 = qsort(A); |
| |
B1 = qsort(B); |
| |
for ( I = 0; I < LA; I++ ) |
| if ( A1[I] != B1[I] && A1[I] != -B1[I] ) |
if ( A1[I] != B1[I] && A1[I] != -B1[I] ) |
| break; |
break; |
| return I == LA ? 1 : 0; |
return I == LA ? 1 : 0; |
| Line 1450 def check_trace(NF,NFIndex,HL) |
|
| Line 1585 def check_trace(NF,NFIndex,HL) |
|
| return 0; |
return 0; |
| } else |
} else |
| error("check_trace"); |
error("check_trace"); |
| |
} |
| |
|
| |
/* |
| |
* Trace = [Input,[[j1,[[c,i,m,d],...]],[j2,[[...],...]],...]] |
| |
* if c != 0 |
| |
* g = 0 |
| |
* g = (c*g + m*gi)/d |
| |
* ... |
| |
* finally fj = g |
| |
*/ |
| |
|
| |
def show_trace(Trace,V) |
| |
{ |
| |
Input = Trace[0]; |
| |
for ( I = 0, T = Input; T != []; T = cdr(T), I++ ) { |
| |
print("F"+rtostr(I)+"=",0); |
| |
print(dp_dtop(car(T),V)); |
| |
} |
| |
Trace = cdr(Trace); |
| |
for ( T = Trace; T != []; T = cdr(T) ) { |
| |
HL = car(T); |
| |
J = car(HL); HL = HL[1]; |
| |
L = length(HL); |
| |
print("F"+rtostr(J)+"=",0); |
| |
for ( I = 0; I < L; I++ ) print("(",0); |
| |
for ( First = 1, S = HL; S != []; S = cdr(S) ) { |
| |
H = car(S); |
| |
|
| |
Coeff = H[0]; |
| |
Index = H[1]; |
| |
Monomial = H[2]; |
| |
Denominator = H[3]; |
| |
if ( First ) { |
| |
if ( Monomial != 1 ) { |
| |
print("(",0); |
| |
print(type(Monomial)==9?dp_dtop(Monomial,V):Monomial,0); |
| |
print(")*",0); |
| |
} |
| |
print("F"+rtostr(Index)+")",0); |
| |
} else { |
| |
if ( Coeff != 1 ) { |
| |
print("*(",0); print(Coeff,0); print(")",0); |
| |
} |
| |
print("+",0); |
| |
if ( Monomial != 1 ) { |
| |
print("(",0); |
| |
print(type(Monomial)==9?dp_dtop(Monomial,V):Monomial,0); |
| |
print(")*",0); |
| |
} |
| |
print("F"+rtostr(Index)+")",0); |
| |
if ( Denominator != 1 ) { |
| |
print("/",0); print(Denominator,0); |
| |
} |
| |
} |
| |
if ( First ) First = 0; |
| |
} |
| |
print(""); |
| |
} |
| } |
} |
| |
|
| /* |
/* |