| version 1.14, 2001/11/19 01:40:05 |
version 1.26, 2007/07/17 08:17:42 |
|
|
| * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| * |
* |
| * $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.13 2001/11/19 00:57:13 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.25 2007/01/18 08:09:02 noro Exp $ |
| */ |
*/ |
| |
|
| |
module gr $ |
| |
/* Empty for now. It will be used in a future. */ |
| |
endmodule $ |
| |
|
| extern INIT_COUNT,ITOR_FAIL$ |
extern INIT_COUNT,ITOR_FAIL$ |
| extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
| |
|
| Line 126 def tolex_tl(G0,V,O,W,H) |
|
| Line 131 def tolex_tl(G0,V,O,W,H) |
|
| |
|
| def tolex(G0,V,O,W) |
def tolex(G0,V,O,W) |
| { |
{ |
| |
Procs = getopt(procs); |
| |
|
| TM = TE = TNF = 0; |
TM = TE = TNF = 0; |
| N = length(V); HM = hmlist(G0,V,O); ZD = zero_dim(HM,V,O); |
N = length(V); HM = hmlist(G0,V,O); ZD = zero_dim(HM,V,O); |
| if ( !ZD ) |
if ( ZD ) |
| error("tolex : ideal is not zero-dimensional!"); |
MB = dp_mbase(map(dp_ptod,HM,V)); |
| MB = dp_mbase(map(dp_ptod,HM,V)); |
else |
| |
MB = 0; |
| for ( J = 0; ; J++ ) { |
for ( J = 0; ; J++ ) { |
| M = lprime(J); |
M = lprime(J); |
| if ( !valid_modulus(HM,M) ) |
if ( !valid_modulus(HM,M) ) |
| continue; |
continue; |
| T0 = time()[0]; GM = tolexm(G0,V,O,W,M); TM += time()[0] - T0; |
T0 = time()[0]; |
| dp_ord(2); |
if ( ZD ) { |
| DL = map(dp_etov,map(dp_ht,map(dp_ptod,GM,W))); |
GM = tolexm(G0,V,O,W,M); |
| D = newvect(N); TL = []; |
dp_ord(2); |
| do |
DL = map(dp_etov,map(dp_ht,map(dp_ptod,GM,W))); |
| TL = cons(dp_dtop(dp_vtoe(D),W),TL); |
D = newvect(N); TL = []; |
| while ( nextm(D,DL,N) ); |
do |
| L = npos_check(DL); NPOSV = L[0]; DIM = L[1]; |
TL = cons(dp_dtop(dp_vtoe(D),W),TL); |
| T0 = time()[0]; NF = gennf(G0,TL,V,O,W[N-1],1)[0]; |
while ( nextm(D,DL,N) ); |
| |
} else { |
| |
HVN = "h"; |
| |
WN = map(rtostr,W); |
| |
while ( member(HVN,WN) ) HVN += "h"; |
| |
HV = strtov(HVN); |
| |
G0H = map(homogenize,G0,W,HV); |
| |
GMH = nd_gr(G0H,append(W,[HV]),M,1); |
| |
GMH=map(subst,GMH,HV,1); |
| |
GM = nd_gr_postproc(GMH,W,M,2,0); |
| |
dp_ord(2); |
| |
for ( T = GM, S = 0; T != []; T = cdr(T) ) |
| |
for ( D = dp_ptod(car(T),V); D; D = dp_rest(D) ) |
| |
S += dp_ht(D); |
| |
TL = dp_terms(S,V); |
| |
} |
| |
TM += time()[0] - T0; |
| |
T0 = time()[0]; NF = gennf(G0,TL,V,O,W[N-1],ZD)[0]; |
| TNF += time()[0] - T0; |
TNF += time()[0] - T0; |
| T0 = time()[0]; |
T0 = time()[0]; |
| R = tolex_main(V,O,NF,GM,M,MB); |
if ( type(Procs) != -1 ) |
| |
R = tolex_d_main(V,O,NF,GM,M,MB,Procs); |
| |
else |
| |
R = tolex_main(V,O,NF,GM,M,MB); |
| TE += time()[0] - T0; |
TE += time()[0] - T0; |
| if ( R ) { |
if ( R ) { |
| if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
| Line 176 def tolex_gsl(G0,V,O,W) |
|
| Line 204 def tolex_gsl(G0,V,O,W) |
|
| while ( nextm(D,DL,N) ); |
while ( nextm(D,DL,N) ); |
| L = npos_check(DL); NPOSV = L[0]; DIM = L[1]; |
L = npos_check(DL); NPOSV = L[0]; DIM = L[1]; |
| if ( NPOSV >= 0 ) { |
if ( NPOSV >= 0 ) { |
| |
if ( dp_gr_print() ) print("shape base"); |
| V0 = W[NPOSV]; |
V0 = W[NPOSV]; |
| T0 = time()[0]; NFL = gennf(G0,TL,V,O,V0,1); |
T0 = time()[0]; NFL = gennf(G0,TL,V,O,V0,1); |
| TNF += time()[0] - T0; |
TNF += time()[0] - T0; |
| Line 316 def dptov(P,W,MB) |
|
| Line 345 def dptov(P,W,MB) |
|
| |
|
| def tolex_main(V,O,NF,GM,M,MB) |
def tolex_main(V,O,NF,GM,M,MB) |
| { |
{ |
| DIM = length(MB); |
if ( MB ) { |
| DV = newvect(DIM); |
PosDim = 0; |
| |
DIM = length(MB); |
| |
DV = newvect(DIM); |
| |
} else |
| |
PosDim = 1; |
| for ( T = GM, SL = [], LCM = 1; T != []; T = cdr(T) ) { |
for ( T = GM, SL = [], LCM = 1; T != []; T = cdr(T) ) { |
| S = p_terms(car(T),V,2); |
S = p_terms(car(T),V,2); |
| |
if ( PosDim ) { |
| |
MB = gather_nf_terms(S,NF,V,O); |
| |
DV = newvect(length(MB)); |
| |
} |
| dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); |
dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); |
| dp_ord(0); NHT = nf_tab_gsl(dp_ptod(LCM*car(S),V),NF); |
dp_ord(O); NHT = nf_tab_gsl(dp_ptod(LCM*car(S),V),NF); |
| dptov(NHT[0],DV,MB); |
dptov(NHT[0],DV,MB); |
| dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); |
dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); |
| if ( !B ) |
if ( !B ) |
| Line 338 def tolex_main(V,O,NF,GM,M,MB) |
|
| Line 375 def tolex_main(V,O,NF,GM,M,MB) |
|
| return SL; |
return SL; |
| } |
} |
| |
|
| |
def tolex_d_main(V,O,NF,GM,M,MB,Procs) |
| |
{ |
| |
map(ox_reset,Procs); |
| |
/* register data in servers */ |
| |
map(ox_cmo_rpc,Procs,"register_data_for_find_base",NF,V,O,MB,M); |
| |
/* discard return value in stack */ |
| |
map(ox_pop_cmo,Procs); |
| |
Free = Procs; |
| |
Busy = []; |
| |
T = GM; |
| |
SL = []; |
| |
while ( T != [] || Busy != [] ){ |
| |
if ( Free == [] || T == [] ) { |
| |
/* someone is working; wait for data */ |
| |
Ready = ox_select(Busy); |
| |
Busy = setminus(Busy,Ready); |
| |
Free = append(Ready,Free); |
| |
for ( ; Ready != []; Ready = cdr(Ready) ) |
| |
SL = cons(ox_get(car(Ready)),SL); |
| |
} else { |
| |
P = car(Free); |
| |
Free = cdr(Free); |
| |
Busy = cons(P,Busy); |
| |
Template = car(T); |
| |
T = cdr(T); |
| |
ox_cmo_rpc(P,"find_base",Template); |
| |
ox_push_cmd(P,262); /* 262 = OX_popCMO */ |
| |
} |
| |
} |
| |
return SL; |
| |
} |
| |
|
| |
struct find_base_data { NF,V,O,MB,M,PosDim,DV }$ |
| |
extern Find_base$ |
| |
|
| |
def register_data_for_find_base(NF,V,O,MB,M) |
| |
{ |
| |
Find_base = newstruct(find_base_data); |
| |
Find_base->NF = NF; |
| |
Find_base->V = V; |
| |
Find_base->O = O; |
| |
Find_base->M = M; |
| |
Find_base->MB = MB; |
| |
|
| |
if ( MB ) { |
| |
Find_base->PosDim = 0; |
| |
DIM = length(MB); |
| |
Find_base->DV = newvect(DIM); |
| |
} else |
| |
Find_base->PosDim = 1; |
| |
} |
| |
|
| |
def find_base(S) { |
| |
NF = Find_base->NF; |
| |
V = Find_base->V; |
| |
O = Find_base->O; |
| |
MB = Find_base->MB; |
| |
M = Find_base->M; |
| |
PosDim = Find_base->PosDim; |
| |
DV = Find_base->DV; |
| |
|
| |
S = p_terms(S,V,2); |
| |
if ( PosDim ) { |
| |
MB = gather_nf_terms(S,NF,V,O); |
| |
DV = newvect(length(MB)); |
| |
} |
| |
dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); |
| |
dp_ord(O); NHT = nf_tab_gsl(dp_ptod(car(S),V),NF); |
| |
dptov(NHT[0],DV,MB); |
| |
dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); |
| |
if ( !B ) |
| |
return 0; |
| |
Len = length(S); |
| |
for ( U = B[1]*car(S), I = 1; I < Len; I++ ) |
| |
U += B[0][I-1]*S[I]; |
| |
R = ptozp(U); |
| |
return R; |
| |
} |
| |
|
| |
/* |
| |
* NF = [Pairs,DN] |
| |
* Pairs = [[NF1,T1],[NF2,T2],...] |
| |
*/ |
| |
|
| |
def gather_nf_terms(S,NF,V,O) |
| |
{ |
| |
R = 0; |
| |
for ( T = S; T != []; T = cdr(T) ) { |
| |
DT = dp_ptod(car(T),V); |
| |
for ( U = NF[0]; U != []; U = cdr(U) ) |
| |
if ( car(U)[1] == DT ) { |
| |
R += tpoly(dp_terms(car(U)[0],V)); |
| |
break; |
| |
} |
| |
} |
| |
return map(dp_ptod,p_terms(R,V,O),V); |
| |
} |
| |
|
| def reduce_dn(L) |
def reduce_dn(L) |
| { |
{ |
| NM = L[0]; DN = L[1]; V = vars(NM); |
NM = L[0]; DN = L[1]; V = vars(NM); |
| Line 352 def minipoly(G0,V,O,P,V0) |
|
| Line 487 def minipoly(G0,V,O,P,V0) |
|
| if ( !zero_dim(hmlist(G0,V,O),V,O) ) |
if ( !zero_dim(hmlist(G0,V,O),V,O) ) |
| error("tolex : ideal is not zero-dimensional!"); |
error("tolex : ideal is not zero-dimensional!"); |
| |
|
| |
Pin = P; |
| |
P = ptozp(P); |
| |
CP = sdiv(P,Pin); |
| G1 = cons(V0-P,G0); |
G1 = cons(V0-P,G0); |
| O1 = [[0,1],[O,length(V)]]; |
O1 = [[0,1],[O,length(V)]]; |
| V1 = cons(V0,V); |
V1 = cons(V0,V); |
| Line 372 def minipoly(G0,V,O,P,V0) |
|
| Line 510 def minipoly(G0,V,O,P,V0) |
|
| TL = cons(V0^J,TL); |
TL = cons(V0^J,TL); |
| NF = gennf(G1,TL,V1,O1,V0,1)[0]; |
NF = gennf(G1,TL,V1,O1,V0,1)[0]; |
| R = tolex_main(V1,O1,NF,[MP],M,MB); |
R = tolex_main(V1,O1,NF,[MP],M,MB); |
| return R[0]; |
return ptozp(subst(R[0],V0,CP*V0)); |
| } |
} |
| } |
} |
| |
|
| Line 380 def minipoly(G0,V,O,P,V0) |
|
| Line 518 def minipoly(G0,V,O,P,V0) |
|
| |
|
| def gennf(G,TL,V,O,V0,FLAG) |
def gennf(G,TL,V,O,V0,FLAG) |
| { |
{ |
| |
F = dp_gr_flags(); |
| |
for ( T = F; T != []; T = cdr(T) ) { |
| |
Key = car(T); T = cdr(T); |
| |
if ( Key == "Demand" ) { |
| |
Dir = car(T); break; |
| |
} |
| |
} |
| |
if ( Dir ) |
| |
return gennf_demand(G,TL,V,O,V0,FLAG,Dir); |
| N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
| for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
| PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
| Line 431 def gennf(G,TL,V,O,V0,FLAG) |
|
| Line 578 def gennf(G,TL,V,O,V0,FLAG) |
|
| return [[map(adj_dn,H,LCM),LCM],PS,GI]; |
return [[map(adj_dn,H,LCM),LCM],PS,GI]; |
| } |
} |
| |
|
| |
def gennf_demand(G,TL,V,O,V0,FLAG,Dir) |
| |
{ |
| |
N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
| |
NTL = length(TL); |
| |
for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
| |
PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
| |
} |
| |
for ( I = 0, DTL = []; TL != []; TL = cdr(TL) ) |
| |
DTL = cons(dp_ptod(car(TL),V),DTL); |
| |
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
| |
GI = cons(I,GI); |
| |
|
| |
USE_TAB = (FLAG != 0); |
| |
if ( USE_TAB ) { |
| |
T0 = time()[0]; |
| |
MB = dp_mbase(HL); DIM = length(MB); |
| |
U = dp_ptod(V0,V); |
| |
UTAB = newvect(DIM); |
| |
for ( I = 0; I < DIM; I++ ) { |
| |
UTAB[I] = [MB[I],remove_cont(dp_true_nf(GI,U*MB[I],PS,1))]; |
| |
if ( dp_gr_print() ) |
| |
print(".",2); |
| |
} |
| |
if ( dp_gr_print() ) |
| |
print(""); |
| |
TTAB = time()[0]-T0; |
| |
} |
| |
|
| |
T0 = time()[0]; |
| |
for ( LCM = 1, Index = 0, H = []; DTL != []; Index++ ) { |
| |
if ( dp_gr_print() ) |
| |
print(".",2); |
| |
T = car(DTL); DTL = cdr(DTL); |
| |
if ( L = search_redble(T,H) ) { |
| |
L = nf_load(Dir,L[0]); |
| |
DD = dp_subd(T,L[1]); |
| |
if ( USE_TAB && (DD == U) ) { |
| |
NF = nf_tab(L[0],UTAB); |
| |
NF = [NF[0],dp_hc(L[1])*NF[1]*T]; |
| |
} else |
| |
NF = nf(GI,L[0]*dp_subd(T,L[1]),dp_hc(L[1])*T,PS); |
| |
} else |
| |
NF = nf(GI,T,T,PS); |
| |
NF = remove_cont(NF); |
| |
nf_save(NF,Dir,Index); |
| |
H = cons([Index,NF[1]],H); |
| |
LCM = ilcm(LCM,dp_hc(NF[1])); |
| |
} |
| |
TNF = time()[0]-T0; |
| |
if ( dp_gr_print() ) |
| |
print("gennf(TAB="+rtostr(TTAB)+" NF="+rtostr(TNF)+")"); |
| |
|
| |
for ( I = 0; I < NTL; I++ ) { |
| |
NF = nf_load(Dir,I); |
| |
NF = adj_dn(NF,LCM); |
| |
nf_save(NF,Dir,I); |
| |
} |
| |
for ( H = [], I = NTL-1; I >= 0; I-- ) |
| |
H = cons(nf_load(Dir,I),H); |
| |
return [[H,LCM],PS,GI]; |
| |
} |
| |
|
| |
def nf_load(Dir,I) |
| |
{ |
| |
return bload(Dir+"/nf"+rtostr(I)); |
| |
} |
| |
|
| |
def nf_save(NF,Dir,I) |
| |
{ |
| |
bsave(NF,Dir+"/nf"+rtostr(I)); |
| |
} |
| |
|
| def adj_dn(P,D) |
def adj_dn(P,D) |
| { |
{ |
| return [(idiv(D,dp_hc(P[1])))*P[0],dp_ht(P[1])]; |
return [(idiv(D,dp_hc(P[1])))*P[0],dp_ht(P[1])]; |
| Line 462 def vtop(S,L,GSL) |
|
| Line 681 def vtop(S,L,GSL) |
|
| } |
} |
| } |
} |
| |
|
| |
/* broken */ |
| |
|
| def leq_nf(TL,NF,LHS,V) |
def leq_nf(TL,NF,LHS,V) |
| { |
{ |
| TLen = length(NF); |
TLen = length(NF); |
| Line 902 def p_nf(P,B,V,O) { |
|
| Line 1123 def p_nf(P,B,V,O) { |
|
| N = length(B); DB = newvect(N); |
N = length(B); DB = newvect(N); |
| for ( I = N-1, IL = []; I >= 0; I-- ) { |
for ( I = N-1, IL = []; I >= 0; I-- ) { |
| DB[I] = dp_ptod(B[I],V); |
DB[I] = dp_ptod(B[I],V); |
| IL = cons(I,IL); |
if ( DB[I] ) IL = cons(I,IL); |
| } |
} |
| return dp_dtop(dp_nf(IL,DP,DB,1),V); |
return dp_dtop(dp_nf(IL,DP,DB,1),V); |
| } |
} |
| Line 912 def p_true_nf(P,B,V,O) { |
|
| Line 1133 def p_true_nf(P,B,V,O) { |
|
| N = length(B); DB = newvect(N); |
N = length(B); DB = newvect(N); |
| for ( I = N-1, IL = []; I >= 0; I-- ) { |
for ( I = N-1, IL = []; I >= 0; I-- ) { |
| DB[I] = dp_ptod(B[I],V); |
DB[I] = dp_ptod(B[I],V); |
| IL = cons(I,IL); |
if ( DB[I] ) IL = cons(I,IL); |
| } |
} |
| L = dp_true_nf(IL,DP,DB,1); |
L = dp_true_nf(IL,DP,DB,1); |
| return [dp_dtop(L[0],V),L[1]]; |
return [dp_dtop(L[0],V),L[1]]; |
| Line 950 def gb_comp(A,B) |
|
| Line 1171 def gb_comp(A,B) |
|
| LB = length(B); |
LB = length(B); |
| if ( LA != LB ) |
if ( LA != LB ) |
| return 0; |
return 0; |
| A1 = qsort(newvect(LA,A)); |
A = newvect(LA,A); |
| B1 = qsort(newvect(LB,B)); |
B = newvect(LB,B); |
| for ( I = 0; I < LA; I++ ) |
for ( I = 0; I < LA; I++ ) |
| |
A[I] *= headsgn(A[I]); |
| |
for ( I = 0; I < LB; I++ ) |
| |
B[I] *= headsgn(B[I]); |
| |
A1 = qsort(A); |
| |
B1 = qsort(B); |
| |
for ( I = 0; I < LA; I++ ) |
| if ( A1[I] != B1[I] && A1[I] != -B1[I] ) |
if ( A1[I] != B1[I] && A1[I] != -B1[I] ) |
| break; |
break; |
| return I == LA ? 1 : 0; |
return I == LA ? 1 : 0; |
| Line 1449 def check_trace(NF,NFIndex,HL) |
|
| Line 1676 def check_trace(NF,NFIndex,HL) |
|
| error("check_trace"); |
error("check_trace"); |
| } |
} |
| |
|
| |
/* |
| |
* Trace = [Input,[[j1,[[c,i,m,d],...]],[j2,[[...],...]],...]] |
| |
* if c != 0 |
| |
* g = 0 |
| |
* g = (c*g + m*gi)/d |
| |
* ... |
| |
* finally fj = g |
| |
*/ |
| |
|
| |
def show_trace(Trace,V) |
| |
{ |
| |
Input = Trace[0]; |
| |
for ( I = 0, T = Input; T != []; T = cdr(T), I++ ) { |
| |
print("F"+rtostr(I)+"=",0); |
| |
print(dp_dtop(car(T),V)); |
| |
} |
| |
Trace = cdr(Trace); |
| |
for ( T = Trace; T != []; T = cdr(T) ) { |
| |
HL = car(T); |
| |
J = car(HL); HL = HL[1]; |
| |
L = length(HL); |
| |
print("F"+rtostr(J)+"=",0); |
| |
for ( I = 0; I < L; I++ ) print("(",0); |
| |
for ( First = 1, S = HL; S != []; S = cdr(S) ) { |
| |
H = car(S); |
| |
|
| |
Coeff = H[0]; |
| |
Index = H[1]; |
| |
Monomial = H[2]; |
| |
Denominator = H[3]; |
| |
if ( First ) { |
| |
if ( Monomial != 1 ) { |
| |
print("(",0); |
| |
print(type(Monomial)==9?dp_dtop(Monomial,V):Monomial,0); |
| |
print(")*",0); |
| |
} |
| |
print("F"+rtostr(Index)+")",0); |
| |
} else { |
| |
if ( Coeff != 1 ) { |
| |
print("*(",0); print(Coeff,0); print(")",0); |
| |
} |
| |
print("+",0); |
| |
if ( Monomial != 1 ) { |
| |
print("(",0); |
| |
print(type(Monomial)==9?dp_dtop(Monomial,V):Monomial,0); |
| |
print(")*",0); |
| |
} |
| |
print("F"+rtostr(Index)+")",0); |
| |
if ( Denominator != 1 ) { |
| |
print("/",0); print(Denominator,0); |
| |
} |
| |
} |
| |
if ( First ) First = 0; |
| |
} |
| |
print(""); |
| |
} |
| |
} |
| |
|
| |
def generating_relation(Trace,V) |
| |
{ |
| |
Trace = cdr(Trace); |
| |
Tab = []; |
| |
for ( T = Trace; T != []; T = cdr(T) ) { |
| |
HL = car(T); |
| |
J = car(HL); HL = HL[1]; |
| |
L = length(HL); |
| |
LHS = strtov("f"+rtostr(J)); |
| |
Dn = 1; |
| |
for ( First = 1, S = HL; S != []; S = cdr(S) ) { |
| |
H = car(S); |
| |
|
| |
Coeff = H[0]; |
| |
Index = H[1]; |
| |
Monomial = type(H[2])==9?dp_dtop(H[2],V):H[2]; |
| |
Denominator = H[3]; |
| |
F = strtov("f"+rtostr(Index)); |
| |
for ( Z = Tab; Z != []; Z = cdr(Z) ) |
| |
if ( Z[0][0] == F ) break; |
| |
if ( Z != [] ) Value = Z[0][1]; |
| |
else Value = [F,1]; |
| |
if ( First ) { |
| |
RHS = Monomial*Value[0]; |
| |
Dn *= Value[1]; |
| |
} else { |
| |
RHS = RHS*Coeff*Value[1]+Dn*Value[0]*Monomial; |
| |
Dn = Value[1]*Dn*Denominator; |
| |
} |
| |
VVVV = tttttttt; |
| |
P = ptozp(Dn*VVVV+RHS); |
| |
RHS = coef(P,0,VVVV); |
| |
Dn = coef(P,1,VVVV); |
| |
if ( First ) First = 0; |
| |
} |
| |
Tab = cons([LHS,[RHS,Dn]],Tab); |
| |
} |
| |
return Tab; |
| |
} |
| |
|
| |
def generating_relation_mod(Trace,V,M) |
| |
{ |
| |
Trace = cdr(Trace); |
| |
Tab = []; |
| |
for ( T = Trace; T != []; T = cdr(T) ) { |
| |
HL = car(T); |
| |
J = car(HL); HL = HL[1]; |
| |
L = length(HL); |
| |
LHS = strtov("f"+rtostr(J)); |
| |
Dn = 1; |
| |
for ( First = 1, S = HL; S != []; S = cdr(S) ) { |
| |
H = car(S); |
| |
|
| |
Coeff = H[0]; |
| |
Index = H[1]; |
| |
Monomial = type(H[2])==9?dp_dtop(H[2],V):H[2]; |
| |
F = strtov("f"+rtostr(Index)); |
| |
for ( Z = Tab; Z != []; Z = cdr(Z) ) |
| |
if ( Z[0][0] == F ) break; |
| |
if ( Z != [] ) Value = Z[0][1]; |
| |
else Value = F; |
| |
if ( First ) { |
| |
RHS = (Monomial*Value)%M; |
| |
} else { |
| |
RHS = ((RHS*Coeff+Value*Monomial)*inv(H[3],M))%M; |
| |
} |
| |
if ( First ) First = 0; |
| |
} |
| |
Tab = cons([LHS,RHS],Tab); |
| |
} |
| |
return Tab; |
| |
} |
| /* |
/* |
| * realloc NFArray so that it can hold * an element as NFArray[Ind]. |
* realloc NFArray so that it can hold * an element as NFArray[Ind]. |
| */ |
*/ |