| version 1.11, 2001/09/28 00:41:16 |
version 1.16, 2002/09/03 08:12:25 |
|
|
| * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| * |
* |
| * $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.10 2001/09/06 00:24:07 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.15 2002/06/12 08:19:04 noro Exp $ |
| */ |
*/ |
| extern INIT_COUNT,ITOR_FAIL$ |
extern INIT_COUNT,ITOR_FAIL$ |
| extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
| Line 128 def tolex(G0,V,O,W) |
|
| Line 128 def tolex(G0,V,O,W) |
|
| { |
{ |
| TM = TE = TNF = 0; |
TM = TE = TNF = 0; |
| N = length(V); HM = hmlist(G0,V,O); ZD = zero_dim(HM,V,O); |
N = length(V); HM = hmlist(G0,V,O); ZD = zero_dim(HM,V,O); |
| if ( !ZD ) |
if ( ZD ) |
| error("tolex : ideal is not zero-dimensional!"); |
MB = dp_mbase(map(dp_ptod,HM,V)); |
| MB = dp_mbase(map(dp_ptod,HM,V)); |
else |
| |
MB = 0; |
| for ( J = 0; ; J++ ) { |
for ( J = 0; ; J++ ) { |
| M = lprime(J); |
M = lprime(J); |
| if ( !valid_modulus(HM,M) ) |
if ( !valid_modulus(HM,M) ) |
| continue; |
continue; |
| T0 = time()[0]; GM = tolexm(G0,V,O,W,M); TM += time()[0] - T0; |
T0 = time()[0]; |
| dp_ord(2); |
if ( ZD ) { |
| DL = map(dp_etov,map(dp_ht,map(dp_ptod,GM,W))); |
GM = tolexm(G0,V,O,W,M); |
| D = newvect(N); TL = []; |
dp_ord(2); |
| do |
DL = map(dp_etov,map(dp_ht,map(dp_ptod,GM,W))); |
| TL = cons(dp_dtop(dp_vtoe(D),W),TL); |
D = newvect(N); TL = []; |
| while ( nextm(D,DL,N) ); |
do |
| L = npos_check(DL); NPOSV = L[0]; DIM = L[1]; |
TL = cons(dp_dtop(dp_vtoe(D),W),TL); |
| T0 = time()[0]; NF = gennf(G0,TL,V,O,W[N-1],1)[0]; |
while ( nextm(D,DL,N) ); |
| |
} else { |
| |
GM = dp_gr_mod_main(G0,W,0,M,2); |
| |
dp_ord(2); |
| |
for ( T = GM, S = 0; T != []; T = cdr(T) ) |
| |
for ( D = dp_ptod(car(T),V); D; D = dp_rest(D) ) |
| |
S += dp_ht(D); |
| |
TL = dp_terms(S,V); |
| |
} |
| |
TM += time()[0] - T0; |
| |
T0 = time()[0]; NF = gennf(G0,TL,V,O,W[N-1],ZD)[0]; |
| TNF += time()[0] - T0; |
TNF += time()[0] - T0; |
| T0 = time()[0]; |
T0 = time()[0]; |
| R = tolex_main(V,O,NF,GM,M,MB); |
R = tolex_main(V,O,NF,GM,M,MB); |
| Line 316 def dptov(P,W,MB) |
|
| Line 327 def dptov(P,W,MB) |
|
| |
|
| def tolex_main(V,O,NF,GM,M,MB) |
def tolex_main(V,O,NF,GM,M,MB) |
| { |
{ |
| DIM = length(MB); |
if ( MB ) { |
| DV = newvect(DIM); |
PosDim = 0; |
| |
DIM = length(MB); |
| |
DV = newvect(DIM); |
| |
} else |
| |
PosDim = 1; |
| for ( T = GM, SL = [], LCM = 1; T != []; T = cdr(T) ) { |
for ( T = GM, SL = [], LCM = 1; T != []; T = cdr(T) ) { |
| S = p_terms(car(T),V,2); |
S = p_terms(car(T),V,2); |
| |
if ( PosDim ) { |
| |
MB = gather_nf_terms(S,NF,V,O); |
| |
DV = newvect(length(MB)); |
| |
} |
| dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); |
dp_ord(O); RHS = termstomat(NF,map(dp_ptod,cdr(S),V),MB,M); |
| dp_ord(0); NHT = nf_tab_gsl(dp_ptod(LCM*car(S),V),NF); |
dp_ord(O); NHT = nf_tab_gsl(dp_ptod(LCM*car(S),V),NF); |
| dptov(NHT[0],DV,MB); |
dptov(NHT[0],DV,MB); |
| dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); |
dp_ord(O); B = hen_ttob_gsl([DV,NHT[1]],RHS,cdr(S),M); |
| if ( !B ) |
if ( !B ) |
| Line 338 def tolex_main(V,O,NF,GM,M,MB) |
|
| Line 357 def tolex_main(V,O,NF,GM,M,MB) |
|
| return SL; |
return SL; |
| } |
} |
| |
|
| |
/* |
| |
* NF = [Pairs,DN] |
| |
* Pairs = [[NF1,T1],[NF2,T2],...] |
| |
*/ |
| |
|
| |
def gather_nf_terms(S,NF,V,O) |
| |
{ |
| |
R = 0; |
| |
for ( T = S; T != []; T = cdr(T) ) { |
| |
DT = dp_ptod(car(T),V); |
| |
for ( U = NF[0]; U != []; U = cdr(U) ) |
| |
if ( car(U)[1] == DT ) { |
| |
R += tpoly(dp_terms(car(U)[0],V)); |
| |
break; |
| |
} |
| |
} |
| |
return map(dp_ptod,p_terms(R,V,O),V); |
| |
} |
| |
|
| def reduce_dn(L) |
def reduce_dn(L) |
| { |
{ |
| NM = L[0]; DN = L[1]; V = vars(NM); |
NM = L[0]; DN = L[1]; V = vars(NM); |
| Line 352 def minipoly(G0,V,O,P,V0) |
|
| Line 390 def minipoly(G0,V,O,P,V0) |
|
| if ( !zero_dim(hmlist(G0,V,O),V,O) ) |
if ( !zero_dim(hmlist(G0,V,O),V,O) ) |
| error("tolex : ideal is not zero-dimensional!"); |
error("tolex : ideal is not zero-dimensional!"); |
| |
|
| |
Pin = P; |
| |
P = ptozp(P); |
| |
CP = sdiv(P,Pin); |
| G1 = cons(V0-P,G0); |
G1 = cons(V0-P,G0); |
| O1 = [[0,1],[O,length(V)]]; |
O1 = [[0,1],[O,length(V)]]; |
| V1 = cons(V0,V); |
V1 = cons(V0,V); |
| Line 372 def minipoly(G0,V,O,P,V0) |
|
| Line 413 def minipoly(G0,V,O,P,V0) |
|
| TL = cons(V0^J,TL); |
TL = cons(V0^J,TL); |
| NF = gennf(G1,TL,V1,O1,V0,1)[0]; |
NF = gennf(G1,TL,V1,O1,V0,1)[0]; |
| R = tolex_main(V1,O1,NF,[MP],M,MB); |
R = tolex_main(V1,O1,NF,[MP],M,MB); |
| return R[0]; |
return ptozp(subst(R[0],V0,CP*V0)); |
| } |
} |
| } |
} |
| |
|
| Line 462 def vtop(S,L,GSL) |
|
| Line 503 def vtop(S,L,GSL) |
|
| } |
} |
| } |
} |
| |
|
| |
/* broken */ |
| |
|
| def leq_nf(TL,NF,LHS,V) |
def leq_nf(TL,NF,LHS,V) |
| { |
{ |
| TLen = length(NF); |
TLen = length(NF); |
| Line 918 def p_true_nf(P,B,V,O) { |
|
| Line 961 def p_true_nf(P,B,V,O) { |
|
| return [dp_dtop(L[0],V),L[1]]; |
return [dp_dtop(L[0],V),L[1]]; |
| } |
} |
| |
|
| |
def p_nf_mod(P,B,V,O,Mod) { |
| |
setmod(Mod); |
| |
dp_ord(O); DP = dp_mod(dp_ptod(P,V),Mod,[]); |
| |
N = length(B); DB = newvect(N); |
| |
for ( I = N-1, IL = []; I >= 0; I-- ) { |
| |
DB[I] = dp_mod(dp_ptod(B[I],V),Mod,[]); |
| |
IL = cons(I,IL); |
| |
} |
| |
return dp_dtop(dp_nf_mod(IL,DP,DB,1,Mod),V); |
| |
} |
| |
|
| def p_terms(D,V,O) |
def p_terms(D,V,O) |
| { |
{ |
| dp_ord(O); |
dp_ord(O); |
| Line 1542 def compute_coef_by_trace(I,Tr,Coef) |
|
| Line 1596 def compute_coef_by_trace(I,Tr,Coef) |
|
| CI = CT; |
CI = CT; |
| } |
} |
| Coef[I] = CI; |
Coef[I] = CI; |
| |
} |
| |
|
| |
extern Gbcheck_DP,Gbcheck_IL$ |
| |
|
| |
def register_data_for_gbcheck(DPL) |
| |
{ |
| |
for ( IL = [], I = length(DPL)-1; I >= 0; I-- ) |
| |
IL = cons(I,IL); |
| |
Gbcheck_DP = newvect(length(DPL),DPL); |
| |
Gbcheck_IL = IL; |
| |
} |
| |
|
| |
def sp_nf_for_gbcheck(Pair) |
| |
{ |
| |
SP = dp_sp(Gbcheck_DP[Pair[0]],Gbcheck_DP[Pair[1]]); |
| |
return dp_nf(Gbcheck_IL,SP,Gbcheck_DP,1); |
| |
} |
| |
|
| |
def gbcheck(B,V,O) |
| |
{ |
| |
dp_ord(O); |
| |
D = map(dp_ptod,B,V); |
| |
L = dp_gr_checklist(D,length(V)); |
| |
DP = L[0]; Plist = L[1]; |
| |
for ( IL = [], I = size(DP)[0]-1; I >= 0; I-- ) |
| |
IL = cons(I,IL); |
| |
Procs = getopt(proc); |
| |
if ( type(Procs) == 4 ) { |
| |
map(ox_reset,Procs); |
| |
/* register DP in servers */ |
| |
map(ox_cmo_rpc,Procs,"register_data_for_gbcheck",vtol(DP)); |
| |
/* discard return value in stack */ |
| |
map(ox_pop_cmo,Procs); |
| |
Free = Procs; |
| |
Busy = []; |
| |
T = Plist; |
| |
while ( T != [] || Busy != [] ){ |
| |
if ( Free == [] || T == [] ) { |
| |
/* someone is working; wait for data */ |
| |
Ready = ox_select(Busy); |
| |
Busy = setminus(Busy,Ready); |
| |
Free = append(Ready,Free); |
| |
for ( ; Ready != []; Ready = cdr(Ready) ) { |
| |
if ( ox_get(car(Ready)) ) { |
| |
map(ox_reset,Procs); |
| |
return 0; |
| |
} |
| |
} |
| |
} else { |
| |
P = car(Free); |
| |
Free = cdr(Free); |
| |
Busy = cons(P,Busy); |
| |
Pair = car(T); |
| |
T = cdr(T); |
| |
ox_cmo_rpc(P,"sp_nf_for_gbcheck",Pair); |
| |
ox_push_cmd(P,262); /* 262 = OX_popCMO */ |
| |
} |
| |
} |
| |
map(ox_reset,Procs); |
| |
return 1; |
| |
} else { |
| |
for ( T = Plist; T != []; T = cdr(T) ) { |
| |
Pair = T[0]; |
| |
SP = dp_sp(DP[Pair[0]],DP[Pair[1]]); |
| |
if ( dp_nf(IL,SP,DP,1) ) |
| |
return 0; |
| |
} |
| |
return 1; |
| |
} |
| } |
} |
| end$ |
end$ |