| version 1.1, 1999/12/27 04:16:32 |
version 1.2, 2000/01/11 06:43:37 |
|
|
| /* $OpenXM$ */ |
/* $OpenXM: OpenXM_contrib2/asir2000/lib/dmul,v 1.1 1999/12/27 04:16:32 noro Exp $ */ |
| #define MAX(a,b) ((a)>(b)?(a):(b)) |
#define MAX(a,b) ((a)>(b)?(a):(b)) |
| #define MIN(a,b) ((a)>(b)?(b):(a)) |
#define MIN(a,b) ((a)>(b)?(b):(a)) |
| |
|
|
|
| Procs = getopt(proc); |
Procs = getopt(proc); |
| if ( type(Procs) == -1 ) |
if ( type(Procs) == -1 ) |
| Procs = []; |
Procs = []; |
| |
Mod = getopt(mod); |
| |
if ( type(Mod) == -1 ) |
| |
Mod = 0; |
| NP = length(Procs)+1; |
NP = length(Procs)+1; |
| V =var(F1); |
V =var(F1); |
| |
if ( !V ) { |
| |
T = F1*F2; |
| |
if ( Mod ) |
| |
return T % Mod; |
| |
else |
| |
return T; |
| |
} |
| D1 = deg(F1,V); |
D1 = deg(F1,V); |
| D2 = deg(F2,V); |
D2 = deg(F2,V); |
| Dmin = MIN(D1,D2); |
Dmin = MIN(D1,D2); |
| Dfft = p_mag(D1+D2+1)+1; |
Dfft = p_mag(D1+D2+1)+1; |
| Bound = maxblen(F1)+maxblen(F2)+p_mag(Dmin)+1; |
Bound = maxblen(F1)+maxblen(F2)+p_mag(Dmin)+1; |
| |
if ( Bound < 32 ) |
| |
Bound = 32; |
| Marray = newvect(NP); |
Marray = newvect(NP); |
| MIarray = newvect(NP); |
MIarray = newvect(NP); |
| for ( I = 0; I < NP; I++ ) { |
for ( I = 0; I < NP; I++ ) { |
|
|
| for ( J = 0; J < NP-1; J++ ) |
for ( J = 0; J < NP-1; J++ ) |
| R += ox_pop_cmo(Procs[J]); |
R += ox_pop_cmo(Procs[J]); |
| T3 = time(); |
T3 = time(); |
| print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); |
/* print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); */ |
| return R%M; |
if ( Mod ) |
| |
return (R%M)%Mod; |
| |
else |
| |
return uadj_coef(R%M,M,ishift(M,1)); |
| } |
} |
| |
|
| /* |
/* |
|
|
| Procs = getopt(proc); |
Procs = getopt(proc); |
| if ( type(Procs) == -1 ) |
if ( type(Procs) == -1 ) |
| Procs = []; |
Procs = []; |
| |
Mod = getopt(mod); |
| |
if ( type(Mod) == -1 ) |
| |
Mod = 0; |
| NP = length(Procs)+1; |
NP = length(Procs)+1; |
| V =var(F1); |
V =var(F1); |
| |
if ( !V ) { |
| |
T = F1^2; |
| |
if ( Mod ) |
| |
return T % Mod; |
| |
else |
| |
return T; |
| |
} |
| D1 = deg(F1,V); |
D1 = deg(F1,V); |
| Dfft = p_mag(2*D1+1)+1; |
Dfft = p_mag(2*D1+1)+1; |
| Bound = 2*maxblen(F1)+p_mag(D1)+1; |
Bound = 2*maxblen(F1)+p_mag(D1)+1; |
| |
if ( Bound < 32 ) |
| |
Bound = 32; |
| Marray = newvect(NP); |
Marray = newvect(NP); |
| MIarray = newvect(NP); |
MIarray = newvect(NP); |
| for ( I = 0; I < NP; I++ ) { |
for ( I = 0; I < NP; I++ ) { |
| Line 104 def d_square(F1) |
|
| Line 129 def d_square(F1) |
|
| for ( J = 0; J < NP-1; J++ ) |
for ( J = 0; J < NP-1; J++ ) |
| R += ox_pop_cmo(Procs[J]); |
R += ox_pop_cmo(Procs[J]); |
| T3 = time(); |
T3 = time(); |
| print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); |
/* print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); */ |
| return R%M; |
if ( Mod ) |
| |
return (R%M)%Mod; |
| |
else |
| |
return uadj_coef(R%M,M,ishift(M,1)); |
| } |
} |
| |
|
| /* |
/* |
| Line 119 def d_tmul(F1,F2,D) |
|
| Line 147 def d_tmul(F1,F2,D) |
|
| Procs = getopt(proc); |
Procs = getopt(proc); |
| if ( type(Procs) == -1 ) |
if ( type(Procs) == -1 ) |
| Procs = []; |
Procs = []; |
| |
Mod = getopt(mod); |
| |
if ( type(Mod) == -1 ) |
| |
Mod = 0; |
| NP = length(Procs)+1; |
NP = length(Procs)+1; |
| V =var(F1); |
V =var(F1); |
| |
if ( !V ) { |
| |
T = utrunc(F1*F2,D); |
| |
if ( Mod ) |
| |
return T % Mod; |
| |
else |
| |
return T; |
| |
} |
| D1 = deg(F1,V); |
D1 = deg(F1,V); |
| D2 = deg(F2,V); |
D2 = deg(F2,V); |
| Dmin = MIN(D1,D2); |
Dmin = MIN(D1,D2); |
| Dfft = p_mag(D1+D2+1)+1; |
Dfft = p_mag(D1+D2+1)+1; |
| Bound = maxblen(F1)+maxblen(F2)+p_mag(Dmin)+1; |
Bound = maxblen(F1)+maxblen(F2)+p_mag(Dmin)+1; |
| |
if ( Bound < 32 ) |
| |
Bound = 32; |
| Marray = newvect(NP); |
Marray = newvect(NP); |
| MIarray = newvect(NP); |
MIarray = newvect(NP); |
| for ( I = 0; I < NP; I++ ) { |
for ( I = 0; I < NP; I++ ) { |
| Line 157 def d_tmul(F1,F2,D) |
|
| Line 196 def d_tmul(F1,F2,D) |
|
| for ( J = 0; J < NP-1; J++ ) |
for ( J = 0; J < NP-1; J++ ) |
| R += ox_pop_cmo(Procs[J]); |
R += ox_pop_cmo(Procs[J]); |
| T3 = time(); |
T3 = time(); |
| print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); |
/* print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); */ |
| return R%M; |
if ( Mod ) |
| |
return (R%M)%Mod; |
| |
else |
| |
return uadj_coef(R%M,M,ishift(M,1)); |
| } |
} |
| |
|
| |
def d_rembymul(F1,F2,INVF2) |
| |
{ |
| |
Procs = getopt(proc); |
| |
if ( type(Procs) == -1 ) |
| |
Procs = []; |
| |
Mod = getopt(mod); |
| |
if ( type(Mod) == -1 ) |
| |
Mod = 0; |
| |
NP = length(Procs)+1; |
| |
if ( !F2 ) |
| |
error("d_rembymul : division by 0"); |
| |
V =var(F1); |
| |
if ( !V ) { |
| |
T = srem(F1,F2); |
| |
if ( Mod ) |
| |
return T % Mod; |
| |
else |
| |
return T; |
| |
} |
| |
D1 = deg(F1,V); |
| |
D2 = deg(F2,V); |
| |
if ( !F1 || !D2 ) |
| |
return 0; |
| |
if ( D1 < D2 ) |
| |
return F1; |
| |
D = D1-D2; |
| |
R1 = utrunc(ureverse(F1),D); |
| |
Q = ureverse(utrunc(d_tmul(R1,INVF2,D|proc=Procs,mod=Mod),D)); |
| |
if ( Mod ) |
| |
return (utrunc(F1,D2-1)-d_tmul(Q,F2,D2-1|proc=Procs,mod=Mod))%Mod; |
| |
else |
| |
return utrunc(F1,D2-1)-d_tmul(Q,F2,D2-1|proc=Procs); |
| |
} |
| |
|
| def call_umul(F1,F2,Ind,M1,M) |
def call_umul(F1,F2,Ind,M1,M) |
| { |
{ |
| C = umul_specialmod(F1,F2,Ind); |
C = umul_specialmod(F1,F2,Ind); |
| Mhat = idiv(M,M1); |
Mhat = idiv(M,M1); |
| MhatInv = inv(Mhat,M1); |
MhatInv = inv(Mhat,M1); |
| return (MhatInv*Mhat)*C; |
return Mhat*((MhatInv*C)%M1); |
| } |
} |
| |
|
| def call_usquare(F1,Ind,M1,M) |
def call_usquare(F1,Ind,M1,M) |
| Line 174 def call_usquare(F1,Ind,M1,M) |
|
| Line 250 def call_usquare(F1,Ind,M1,M) |
|
| C = usquare_specialmod(F1,Ind); |
C = usquare_specialmod(F1,Ind); |
| Mhat = idiv(M,M1); |
Mhat = idiv(M,M1); |
| MhatInv = inv(Mhat,M1); |
MhatInv = inv(Mhat,M1); |
| return (MhatInv*Mhat)*C; |
return Mhat*((MhatInv*C)%M1); |
| } |
} |
| |
|
| def call_utmul(F1,F2,D,Ind,M1,M) |
def call_utmul(F1,F2,D,Ind,M1,M) |
| Line 182 def call_utmul(F1,F2,D,Ind,M1,M) |
|
| Line 258 def call_utmul(F1,F2,D,Ind,M1,M) |
|
| C = utmul_specialmod(F1,F2,D,Ind); |
C = utmul_specialmod(F1,F2,D,Ind); |
| Mhat = idiv(M,M1); |
Mhat = idiv(M,M1); |
| MhatInv = inv(Mhat,M1); |
MhatInv = inv(Mhat,M1); |
| return (MhatInv*Mhat)*C; |
return Mhat*((MhatInv*C)%M1); |
| } |
} |
| end$ |
end$ |