| version 1.22, 2003/04/20 08:54:28 |
version 1.27, 2003/12/12 03:08:29 |
|
|
| * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| * |
* |
| * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.21 2002/01/30 02:12:58 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.26 2003/10/20 00:58:47 takayama Exp $ |
| */ |
*/ |
| /* requires 'primdec' */ |
/* requires 'primdec' */ |
| |
|
| extern LIBRARY_GR_LOADED$ |
#define TMP_S ssssssss |
| extern LIBRARY_PRIMDEC_LOADED$ |
#define TMP_DS dssssssss |
| |
#define TMP_T dtttttttt |
| |
#define TMP_DT tttttttt |
| |
#define TMP_Y1 yyyyyyyy1 |
| |
#define TMP_DY1 dyyyyyyyy1 |
| |
#define TMP_Y2 yyyyyyyy2 |
| |
#define TMP_DY2 dyyyyyyyy2 |
| |
|
| if(!LIBRARY_GR_LOADED) load("gr"); else ; LIBRARY_GR_LOADED = 1$ |
if (!module_definedp("gr")) load("gr")$ else{ }$ |
| if(!LIBRARY_PRIMDEC_LOADED) load("primdec"); else ; LIBRARY_PRIMDEC_LOADED = 1$ |
if (!module_definedp("primdec")) load("primdec")$ else{ }$ |
| |
module bfct $ |
| |
/* Empty for now. It will be used in a future. */ |
| |
endmodule $ |
| |
|
| /* toplevel */ |
/* toplevel */ |
| |
|
|
|
| |
|
| def ann(F) |
def ann(F) |
| { |
{ |
| |
if ( member(s,vars(F)) ) |
| |
error("ann : the variable 's' is reserved."); |
| V = vars(F); |
V = vars(F); |
| N = length(V); |
N = length(V); |
| D = newvect(N); |
D = newvect(N); |
|
|
| for ( I = N-1, DV = []; I >= 0; I-- ) |
for ( I = N-1, DV = []; I >= 0; I-- ) |
| DV = cons(strtov("d"+rtostr(V[I])),DV); |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
| |
|
| W = append([y1,y2,t],V); |
W = append([TMP_Y1,TMP_Y2,TMP_T],V); |
| DW = append([dy1,dy2,dt],DV); |
DW = append([TMP_DY1,TMP_DY2,TMP_DT],DV); |
| |
|
| B = [1-y1*y2,t-y1*F]; |
B = [1-TMP_Y1*TMP_Y2,TMP_T-TMP_Y1*F]; |
| for ( I = 0; I < N; I++ ) { |
for ( I = 0; I < N; I++ ) { |
| B = cons(DV[I]+y1*diff(F,V[I])*dt,B); |
B = cons(DV[I]+TMP_Y1*diff(F,V[I])*TMP_DT,B); |
| } |
} |
| |
|
| /* homogenized (heuristics) */ |
/* homogenized (heuristics) */ |
|
|
| G1 = []; |
G1 = []; |
| for ( T = G0; T != []; T = cdr(T) ) { |
for ( T = G0; T != []; T = cdr(T) ) { |
| E = car(T); VL = vars(E); |
E = car(T); VL = vars(E); |
| if ( !member(y1,VL) && !member(y2,VL) ) |
if ( !member(TMP_Y1,VL) && !member(TMP_Y2,VL) ) |
| G1 = cons(E,G1); |
G1 = cons(E,G1); |
| } |
} |
| G2 = map(psi,G1,t,dt); |
G2 = map(psi,G1,TMP_T,TMP_DT); |
| G3 = map(subst,G2,t,-1-s); |
G3 = map(subst,G2,TMP_T,-1-s); |
| return G3; |
return G3; |
| } |
} |
| |
|
|
|
| |
|
| def ann0(F) |
def ann0(F) |
| { |
{ |
| V = vars(F); |
F = subst(F,s,TMP_S); |
| N = length(V); |
Ann = ann(F); |
| D = newvect(N); |
Bf = bfunction(F); |
| |
|
| for ( I = 0; I < N; I++ ) |
|
| D[I] = [deg(F,V[I]),V[I]]; |
|
| qsort(D,compare_first); |
|
| for ( V = [], I = 0; I < N; I++ ) |
|
| V = cons(D[I][1],V); |
|
| |
|
| for ( I = N-1, DV = []; I >= 0; I-- ) |
|
| DV = cons(strtov("d"+rtostr(V[I])),DV); |
|
| |
|
| /* XXX : heuristics */ |
|
| W = append([y1,y2,t],reverse(V)); |
|
| DW = append([dy1,dy2,dt],reverse(DV)); |
|
| WDW = append(W,DW); |
|
| |
|
| B = [1-y1*y2,t-y1*F]; |
|
| for ( I = 0; I < N; I++ ) { |
|
| B = cons(DV[I]+y1*diff(F,V[I])*dt,B); |
|
| } |
|
| |
|
| /* homogenized (heuristics) */ |
|
| dp_nelim(2); |
|
| G0 = dp_weyl_gr_main(B,WDW,1,0,6); |
|
| G1 = []; |
|
| for ( T = G0; T != []; T = cdr(T) ) { |
|
| E = car(T); VL = vars(E); |
|
| if ( !member(y1,VL) && !member(y2,VL) ) |
|
| G1 = cons(E,G1); |
|
| } |
|
| G2 = map(psi,G1,t,dt); |
|
| G3 = map(subst,G2,t,-1-s); |
|
| |
|
| /* G3 = J_f(s) */ |
|
| |
|
| V1 = cons(s,V); DV1 = cons(ds,DV); V1DV1 = append(V1,DV1); |
|
| G4 = dp_weyl_gr_main(cons(F,G3),V1DV1,0,1,0); |
|
| Bf = weyl_minipoly(G4,V1DV1,0,s); |
|
| |
|
| FList = cdr(fctr(Bf)); |
FList = cdr(fctr(Bf)); |
| for ( T = FList, Min = 0; T != []; T = cdr(T) ) { |
for ( T = FList, Min = 0; T != []; T = cdr(T) ) { |
| LF = car(car(T)); |
LF = car(car(T)); |
|
|
| if ( dn(Root) == 1 && Root < Min ) |
if ( dn(Root) == 1 && Root < Min ) |
| Min = Root; |
Min = Root; |
| } |
} |
| return [Min,map(subst,G3,s,Min)]; |
return [Min,map(subst,Ann,s,Min,TMP_S,s,TMP_DS,ds)]; |
| } |
} |
| |
|
| def indicial1(F,V) |
|
| { |
|
| W = append([y1,t],V); |
|
| N = length(V); |
|
| B = [t-y1*F]; |
|
| for ( I = N-1, DV = []; I >= 0; I-- ) |
|
| DV = cons(strtov("d"+rtostr(V[I])),DV); |
|
| DW = append([dy1,dt],DV); |
|
| for ( I = 0; I < N; I++ ) { |
|
| B = cons(DV[I]+y1*diff(F,V[I])*dt,B); |
|
| } |
|
| dp_nelim(1); |
|
| |
|
| /* homogenized (heuristics) */ |
|
| G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); |
|
| G1 = map(subst,G0,y1,1); |
|
| G2 = map(psi,G1,t,dt); |
|
| G3 = map(subst,G2,t,-s-1); |
|
| return G3; |
|
| } |
|
| |
|
| def psi(F,T,DT) |
def psi(F,T,DT) |
| { |
{ |
| D = dp_ptod(F,[T,DT]); |
D = dp_ptod(F,[T,DT]); |
| Line 389 def initial_part(F,V,MW,W) |
|
| Line 342 def initial_part(F,V,MW,W) |
|
| |
|
| def bfct(F) |
def bfct(F) |
| { |
{ |
| |
/* XXX */ |
| |
F = replace_vars_f(F); |
| |
|
| V = vars(F); |
V = vars(F); |
| N = length(V); |
N = length(V); |
| D = newvect(N); |
D = newvect(N); |
|
|
| return Minipoly; |
return Minipoly; |
| } |
} |
| |
|
| |
/* called from bfct() only */ |
| |
|
| |
def indicial1(F,V) |
| |
{ |
| |
W = append([y1,t],V); |
| |
N = length(V); |
| |
B = [t-y1*F]; |
| |
for ( I = N-1, DV = []; I >= 0; I-- ) |
| |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
| |
DW = append([dy1,dt],DV); |
| |
for ( I = 0; I < N; I++ ) { |
| |
B = cons(DV[I]+y1*diff(F,V[I])*dt,B); |
| |
} |
| |
dp_nelim(1); |
| |
|
| |
/* homogenized (heuristics) */ |
| |
G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); |
| |
G1 = map(subst,G0,y1,1); |
| |
G2 = map(psi,G1,t,dt); |
| |
G3 = map(subst,G2,t,-s-1); |
| |
return G3; |
| |
} |
| |
|
| /* b-function computation via generic_bfct() (experimental) */ |
/* b-function computation via generic_bfct() (experimental) */ |
| |
|
| def bfct_via_gbfct(F) |
def bfct_via_gbfct(F) |
| Line 425 def bfct_via_gbfct(F) |
|
| Line 404 def bfct_via_gbfct(F) |
|
| for ( I = N-1, DV = []; I >= 0; I-- ) |
for ( I = N-1, DV = []; I >= 0; I-- ) |
| DV = cons(strtov("d"+rtostr(V[I])),DV); |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
| |
|
| B = [t-F]; |
B = [TMP_T-F]; |
| for ( I = 0; I < N; I++ ) { |
for ( I = 0; I < N; I++ ) { |
| B = cons(DV[I]+diff(F,V[I])*dt,B); |
B = cons(DV[I]+diff(F,V[I])*TMP_DT,B); |
| } |
} |
| V1 = cons(t,V); DV1 = cons(dt,DV); |
V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV); |
| W = newvect(N+1); |
W = newvect(N+1); |
| W[0] = 1; |
W[0] = 1; |
| R = generic_bfct(B,V1,DV1,W); |
R = generic_bfct(B,V1,DV1,W); |
| Line 462 def bfct_via_gbfct_weight(F,V) |
|
| Line 441 def bfct_via_gbfct_weight(F,V) |
|
| for ( I = N-1, DV = []; I >= 0; I-- ) |
for ( I = N-1, DV = []; I >= 0; I-- ) |
| DV = cons(strtov("d"+rtostr(V[I])),DV); |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
| |
|
| B = [t-F]; |
B = [TMP_T-F]; |
| for ( I = 0; I < N; I++ ) { |
for ( I = 0; I < N; I++ ) { |
| B = cons(DV[I]+diff(F,V[I])*dt,B); |
B = cons(DV[I]+diff(F,V[I])*TMP_DT,B); |
| } |
} |
| V1 = cons(t,V); DV1 = cons(dt,DV); |
V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV); |
| W = newvect(N+1); |
W = newvect(N+1); |
| W[0] = 1; |
W[0] = 1; |
| R = generic_bfct_1(B,V1,DV1,W); |
R = generic_bfct_1(B,V1,DV1,W); |
| Line 499 def bfct_via_gbfct_weight_1(F,V) |
|
| Line 478 def bfct_via_gbfct_weight_1(F,V) |
|
| for ( I = N-1, DV = []; I >= 0; I-- ) |
for ( I = N-1, DV = []; I >= 0; I-- ) |
| DV = cons(strtov("d"+rtostr(V[I])),DV); |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
| |
|
| B = [t-F]; |
B = [TMP_T-F]; |
| for ( I = 0; I < N; I++ ) { |
for ( I = 0; I < N; I++ ) { |
| B = cons(DV[I]+diff(F,V[I])*dt,B); |
B = cons(DV[I]+diff(F,V[I])*TMP_DT,B); |
| } |
} |
| V1 = append(V,[t]); DV1 = append(DV,[dt]); |
V1 = append(V,[TMP_T]); DV1 = append(DV,[TMP_DT]); |
| W = newvect(N+1); |
W = newvect(N+1); |
| W[N] = 1; |
W[N] = 1; |
| R = generic_bfct_1(B,V1,DV1,W); |
R = generic_bfct_1(B,V1,DV1,W); |
| Line 549 def bfct_via_gbfct_weight_2(F,V) |
|
| Line 528 def bfct_via_gbfct_weight_2(F,V) |
|
| for ( I = N-1, DV = []; I >= 0; I-- ) |
for ( I = N-1, DV = []; I >= 0; I-- ) |
| DV = cons(strtov("d"+rtostr(V[I])),DV); |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
| |
|
| B = [t-F]; |
B = [TMP_T-F]; |
| for ( I = 0; I < N; I++ ) { |
for ( I = 0; I < N; I++ ) { |
| B = cons(DV[I]+diff(F,V[I])*dt,B); |
B = cons(DV[I]+diff(F,V[I])*TMP_DT,B); |
| } |
} |
| V1 = cons(t,V); DV1 = cons(dt,DV); |
V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV); |
| V2 = append(V,[t]); DV2 = append(DV,[dt]); |
V2 = append(V,[TMP_T]); DV2 = append(DV,[TMP_DT]); |
| W = newvect(N+1,[1]); |
W = newvect(N+1,[1]); |
| dp_weyl_set_weight(W); |
dp_weyl_set_weight(W); |
| |
|
| Line 605 def bfct_via_gbfct_weight_2(F,V) |
|
| Line 584 def bfct_via_gbfct_weight_2(F,V) |
|
| return subst(R,s,-s-1); |
return subst(R,s,-s-1); |
| } |
} |
| |
|
| |
/* minimal polynomial of s; modular computation */ |
| |
|
| def weyl_minipolym(G,V,O,M,V0) |
def weyl_minipolym(G,V,O,M,V0) |
| { |
{ |
| N = length(V); |
N = length(V); |
| Line 646 def weyl_minipolym(G,V,O,M,V0) |
|
| Line 627 def weyl_minipolym(G,V,O,M,V0) |
|
| } |
} |
| } |
} |
| |
|
| |
/* minimal polynomial of s over Q */ |
| |
|
| def weyl_minipoly(G0,V0,O0,P) |
def weyl_minipoly(G0,V0,O0,P) |
| { |
{ |
| HM = hmlist(G0,V0,O0); |
HM = hmlist(G0,V0,O0); |
|
|
| return S; |
return S; |
| } |
} |
| |
|
| def member(A,L) { |
|
| for ( ; L != []; L = cdr(L) ) |
|
| if ( A == car(L) ) |
|
| return 1; |
|
| return 0; |
|
| } |
|
| |
|
| def intersection(A,B) |
def intersection(A,B) |
| { |
{ |
| for ( L = []; A != []; A = cdr(A) ) |
for ( L = []; A != []; A = cdr(A) ) |
| Line 832 def w_tdeg(F,V,W) |
|
| Line 808 def w_tdeg(F,V,W) |
|
| for ( R = 0; T; T = cdr(T) ) { |
for ( R = 0; T; T = cdr(T) ) { |
| D = dp_td(T); |
D = dp_td(T); |
| if ( D > R ) R = D; |
if ( D > R ) R = D; |
| |
} |
| |
return R; |
| |
} |
| |
|
| |
def replace_vars_f(F) |
| |
{ |
| |
return subst(F,s,TMP_S,t,TMP_T,y1,TMP_Y1,y2,TMP_Y2); |
| |
} |
| |
|
| |
def replace_vars_v(V) |
| |
{ |
| |
V = replace_var(V,s,TMP_S); |
| |
V = replace_var(V,t,TMP_T); |
| |
V = replace_var(V,y1,TMP_Y1); |
| |
V = replace_var(V,y2,TMP_Y2); |
| |
return V; |
| |
} |
| |
|
| |
def replace_var(V,X,Y) |
| |
{ |
| |
V = reverse(V); |
| |
for ( R = []; V != []; V = cdr(V) ) { |
| |
Z = car(V); |
| |
if ( Z == X ) |
| |
R = cons(Y,R); |
| |
else |
| |
R = cons(Z,R); |
| } |
} |
| return R; |
return R; |
| } |
} |