| version 1.19, 2002/01/29 02:03:41 |
version 1.23, 2003/04/20 11:59:57 |
|
|
| * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| * |
* |
| * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.18 2002/01/28 02:42:27 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.22 2003/04/20 08:54:28 noro Exp $ |
| */ |
*/ |
| /* requires 'primdec' */ |
/* requires 'primdec' */ |
| |
|
| |
#define TMP_S ssssssss |
| |
#define TMP_T tttttttt |
| |
#define TMP_Y1 yyyyyyyy1 |
| |
#define TMP_Y2 yyyyyyyy2 |
| |
|
| |
extern LIBRARY_GR_LOADED$ |
| |
extern LIBRARY_PRIMDEC_LOADED$ |
| |
|
| |
if(!LIBRARY_GR_LOADED) load("gr"); else ; LIBRARY_GR_LOADED = 1$ |
| |
if(!LIBRARY_PRIMDEC_LOADED) load("primdec"); else ; LIBRARY_PRIMDEC_LOADED = 1$ |
| |
|
| |
/* toplevel */ |
| |
|
| |
def bfunction(F) |
| |
{ |
| |
/* XXX */ |
| |
F = replace_vars_f(F); |
| |
|
| |
V = vars(F); |
| |
N = length(V); |
| |
D = newvect(N); |
| |
|
| |
for ( I = 0; I < N; I++ ) |
| |
D[I] = [deg(F,V[I]),V[I]]; |
| |
qsort(D,compare_first); |
| |
for ( V = [], I = 0; I < N; I++ ) |
| |
V = cons(D[I][1],V); |
| |
return bfct_via_gbfct_weight(F,V); |
| |
} |
| |
|
| /* annihilating ideal of F^s */ |
/* annihilating ideal of F^s */ |
| |
|
| def ann(F) |
def ann(F) |
| { |
{ |
| |
/* XXX */ |
| |
F = replace_vars_f(F); |
| |
|
| V = vars(F); |
V = vars(F); |
| N = length(V); |
N = length(V); |
| D = newvect(N); |
D = newvect(N); |
|
|
| |
|
| def ann0(F) |
def ann0(F) |
| { |
{ |
| |
/* XXX */ |
| |
F = replace_vars_f(F); |
| |
|
| V = vars(F); |
V = vars(F); |
| N = length(V); |
N = length(V); |
| D = newvect(N); |
D = newvect(N); |
| Line 367 def initial_part(F,V,MW,W) |
|
| Line 403 def initial_part(F,V,MW,W) |
|
| |
|
| def bfct(F) |
def bfct(F) |
| { |
{ |
| |
/* XXX */ |
| |
F = replace_vars_f(F); |
| |
|
| V = vars(F); |
V = vars(F); |
| N = length(V); |
N = length(V); |
| D = newvect(N); |
D = newvect(N); |
|
|
| |
|
| def bfct_via_gbfct(F) |
def bfct_via_gbfct(F) |
| { |
{ |
| |
/* XXX */ |
| |
F = replace_vars_f(F); |
| |
|
| V = vars(F); |
V = vars(F); |
| N = length(V); |
N = length(V); |
| D = newvect(N); |
D = newvect(N); |
| Line 410 def bfct_via_gbfct(F) |
|
| Line 452 def bfct_via_gbfct(F) |
|
| V1 = cons(t,V); DV1 = cons(dt,DV); |
V1 = cons(t,V); DV1 = cons(dt,DV); |
| W = newvect(N+1); |
W = newvect(N+1); |
| W[0] = 1; |
W[0] = 1; |
| R = generic_bfct_1(B,V1,DV1,W); |
R = generic_bfct(B,V1,DV1,W); |
| |
|
| return subst(R,s,-s-1); |
return subst(R,s,-s-1); |
| } |
} |
| Line 419 def bfct_via_gbfct(F) |
|
| Line 461 def bfct_via_gbfct(F) |
|
| |
|
| def bfct_via_gbfct_weight(F,V) |
def bfct_via_gbfct_weight(F,V) |
| { |
{ |
| |
/* XXX */ |
| |
F = replace_vars_f(F); |
| |
V = replace_vars_v(V); |
| |
|
| N = length(V); |
N = length(V); |
| D = newvect(N); |
D = newvect(N); |
| Wt = getopt(weight); |
Wt = getopt(weight); |
| Line 456 def bfct_via_gbfct_weight(F,V) |
|
| Line 502 def bfct_via_gbfct_weight(F,V) |
|
| |
|
| def bfct_via_gbfct_weight_1(F,V) |
def bfct_via_gbfct_weight_1(F,V) |
| { |
{ |
| |
/* XXX */ |
| |
F = replace_vars_f(F); |
| |
V = replace_vars_v(V); |
| |
|
| N = length(V); |
N = length(V); |
| D = newvect(N); |
D = newvect(N); |
| Wt = getopt(weight); |
Wt = getopt(weight); |
| Line 484 def bfct_via_gbfct_weight_1(F,V) |
|
| Line 534 def bfct_via_gbfct_weight_1(F,V) |
|
| V1 = append(V,[t]); DV1 = append(DV,[dt]); |
V1 = append(V,[t]); DV1 = append(DV,[dt]); |
| W = newvect(N+1); |
W = newvect(N+1); |
| W[N] = 1; |
W[N] = 1; |
| R = generic_bfct(B,V1,DV1,W); |
R = generic_bfct_1(B,V1,DV1,W); |
| dp_set_weight(0); |
dp_set_weight(0); |
| return subst(R,s,-s-1); |
return subst(R,s,-s-1); |
| } |
} |
| |
|
| def bfct_via_gbfct_weight_2(F,V) |
def bfct_via_gbfct_weight_2(F,V) |
| { |
{ |
| |
/* XXX */ |
| |
F = replace_vars_f(F); |
| |
V = replace_vars_v(V); |
| |
|
| N = length(V); |
N = length(V); |
| D = newvect(N); |
D = newvect(N); |
| Wt = getopt(weight); |
Wt = getopt(weight); |
| Line 572 def bfct_via_gbfct_weight_2(F,V) |
|
| Line 626 def bfct_via_gbfct_weight_2(F,V) |
|
| /* change of ordering from VDV to VDV2 */ |
/* change of ordering from VDV to VDV2 */ |
| VDV2 = append(V2,DV2); |
VDV2 = append(V2,DV2); |
| dp_set_weight(WtV2); |
dp_set_weight(WtV2); |
| GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-1,0); |
for ( Pind = 0; ; Pind++ ) { |
| |
Prime = lprime(Pind); |
| |
GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-Prime,0); |
| |
if ( GIN2 ) break; |
| |
} |
| |
|
| R = weyl_minipoly(GIN2,VDV2,0,T); /* M represents DRL order */ |
R = weyl_minipoly(GIN2,VDV2,0,T); /* M represents DRL order */ |
| dp_set_weight(0); |
dp_set_weight(0); |
| Line 632 def weyl_minipoly(G0,V0,O0,P) |
|
| Line 690 def weyl_minipoly(G0,V0,O0,P) |
|
| PS[I] = dp_ptod(car(T),V0); |
PS[I] = dp_ptod(car(T),V0); |
| for ( I = Len - 1, GI = []; I >= 0; I-- ) |
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
| GI = cons(I,GI); |
GI = cons(I,GI); |
| |
PSM = newvect(Len); |
| DP = dp_ptod(P,V0); |
DP = dp_ptod(P,V0); |
| |
|
| for ( I = 0; ; I++ ) { |
for ( Pind = 0; ; Pind++ ) { |
| Prime = lprime(I); |
Prime = lprime(Pind); |
| if ( !valid_modulus(HM,Prime) ) |
if ( !valid_modulus(HM,Prime) ) |
| continue; |
continue; |
| MP = weyl_minipolym(G0,V0,O0,Prime,P); |
setmod(Prime); |
| D = deg(MP,var(MP)); |
for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ ) |
| |
PSM[I] = dp_mod(dp_ptod(car(T),V0),Prime,[]); |
| |
|
| NFP = weyl_nf(GI,DP,1,PS); |
NFP = weyl_nf(GI,DP,1,PS); |
| |
NFPM = dp_mod(NFP[0],Prime,[])/ptomp(NFP[1],Prime); |
| |
|
| NF = [[dp_ptod(1,V0),1]]; |
NF = [[dp_ptod(1,V0),1]]; |
| LCM = 1; |
LCM = 1; |
| |
|
| for ( J = 1; J <= D; J++ ) { |
TM = dp_mod(<<0>>,Prime,[]); |
| |
TTM = dp_mod(dp_ptod(1,V0),Prime,[]); |
| |
GM = NFM = [[TTM,TM]]; |
| |
|
| |
for ( D = 1; ; D++ ) { |
| if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
| print(".",2); |
print(".",2); |
| NFPrev = car(NF); |
NFPrev = car(NF); |
| Line 654 def weyl_minipoly(G0,V0,O0,P) |
|
| Line 720 def weyl_minipoly(G0,V0,O0,P) |
|
| NFJ = remove_cont(NFJ); |
NFJ = remove_cont(NFJ); |
| NF = cons(NFJ,NF); |
NF = cons(NFJ,NF); |
| LCM = ilcm(LCM,NFJ[1]); |
LCM = ilcm(LCM,NFJ[1]); |
| |
|
| |
/* modular computation */ |
| |
TM = dp_mod(<<D>>,Prime,[]); |
| |
TTM = dp_mod(NFJ[0],Prime,[])/ptomp(NFJ[1],Prime); |
| |
NFM = cons([TTM,TM],NFM); |
| |
LM = dp_lnf_mod([TTM,TM],GM,Prime); |
| |
if ( !LM[0] ) |
| |
break; |
| |
else |
| |
GM = insert(GM,LM); |
| } |
} |
| |
|
| if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
| print(""); |
print(""); |
| U = NF[0][0]*idiv(LCM,NF[0][1]); |
U = NF[0][0]*idiv(LCM,NF[0][1]); |
| Line 787 def w_tdeg(F,V,W) |
|
| Line 864 def w_tdeg(F,V,W) |
|
| for ( R = 0; T; T = cdr(T) ) { |
for ( R = 0; T; T = cdr(T) ) { |
| D = dp_td(T); |
D = dp_td(T); |
| if ( D > R ) R = D; |
if ( D > R ) R = D; |
| |
} |
| |
return R; |
| |
} |
| |
|
| |
def replace_vars_f(F) |
| |
{ |
| |
return subst(F,s,TMP_S,t,TMP_T,y1,TMP_Y1,y2,TMP_Y2); |
| |
} |
| |
|
| |
def replace_vars_v(V) |
| |
{ |
| |
V = replace_var(V,s,TMP_S); |
| |
V = replace_var(V,t,TMP_T); |
| |
V = replace_var(V,y1,TMP_Y1); |
| |
V = replace_var(V,y2,TMP_Y2); |
| |
return V; |
| |
} |
| |
|
| |
def replace_var(V,X,Y) |
| |
{ |
| |
V = reverse(V); |
| |
for ( R = []; V != []; V = cdr(V) ) { |
| |
Z = car(V); |
| |
if ( Z == X ) |
| |
R = cons(Y,R); |
| |
else |
| |
R = cons(Z,R); |
| } |
} |
| return R; |
return R; |
| } |
} |