[BACK]Return to bfct CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / lib

Diff for /OpenXM_contrib2/asir2000/lib/bfct between version 1.16 and 1.19

version 1.16, 2001/01/18 00:52:32 version 1.19, 2002/01/29 02:03:41
Line 45 
Line 45 
  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,   * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.   * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
  *   *
  * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.15 2001/01/11 08:43:23 noro Exp $   * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.18 2002/01/28 02:42:27 noro Exp $
  */   */
 /* requires 'primdec' */  /* requires 'primdec' */
   
Line 270  def generic_bfct(F,V,DV,W)
Line 270  def generic_bfct(F,V,DV,W)
         return B;          return B;
 }  }
   
   /* all term reduction + interreduce */
   def generic_bfct_1(F,V,DV,W)
   {
           N = length(V);
           N2 = N*2;
   
           /* If W is a list, convert it to a vector */
           if ( type(W) == 4 )
                   W = newvect(length(W),W);
           dp_weyl_set_weight(W);
   
           /* create a term order M in D<x,d> (DRL) */
           M = newmat(N2,N2);
           for ( J = 0; J < N2; J++ )
                   M[0][J] = 1;
           for ( I = 1; I < N2; I++ )
                   M[I][N2-I] = -1;
   
           VDV = append(V,DV);
   
           /* create a non-term order MW in D<x,d> */
           MW = newmat(N2+1,N2);
           for ( J = 0; J < N; J++ )
                   MW[0][J] = -W[J];
           for ( ; J < N2; J++ )
                   MW[0][J] = W[J-N];
           for ( I = 1; I <= N2; I++ )
                   for ( J = 0; J < N2; J++ )
                           MW[I][J] = M[I-1][J];
   
           /* create a homogenized term order MWH in D<x,d,h> */
           MWH = newmat(N2+2,N2+1);
           for ( J = 0; J <= N2; J++ )
                   MWH[0][J] = 1;
           for ( I = 1; I <= N2+1; I++ )
                   for ( J = 0; J < N2; J++ )
                           MWH[I][J] = MW[I-1][J];
   
           /* homogenize F */
           VDVH = append(VDV,[h]);
           FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
   
           /* compute a groebner basis of FH w.r.t. MWH */
   /*      dp_gr_flags(["Top",1,"NoRA",1]); */
           GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
   /*      dp_gr_flags(["Top",0,"NoRA",0]); */
   
           /* dehomigenize GH */
           G = map(subst,GH,h,1);
   
           /* G is a groebner basis w.r.t. a non term order MW */
           /* take the initial part w.r.t. (-W,W) */
           GIN = map(initial_part,G,VDV,MW,W);
   
           /* GIN is a groebner basis w.r.t. a term order M */
           /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
   
           /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
           for ( I = 0, T = 0; I < N; I++ )
                   T += W[I]*V[I]*DV[I];
           B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */
           return B;
   }
   
 def initial_part(F,V,MW,W)  def initial_part(F,V,MW,W)
 {  {
         N2 = length(V);          N2 = length(V);
Line 346  def bfct_via_gbfct(F)
Line 410  def bfct_via_gbfct(F)
         V1 = cons(t,V); DV1 = cons(dt,DV);          V1 = cons(t,V); DV1 = cons(dt,DV);
         W = newvect(N+1);          W = newvect(N+1);
         W[0] = 1;          W[0] = 1;
           R = generic_bfct_1(B,V1,DV1,W);
   
           return subst(R,s,-s-1);
   }
   
   /* use an order s.t. [t,x,y,z,...,dt,dx,dy,dz,...,h] */
   
   def bfct_via_gbfct_weight(F,V)
   {
           N = length(V);
           D = newvect(N);
           Wt = getopt(weight);
           if ( type(Wt) != 4 ) {
                   for ( I = 0, Wt = []; I < N; I++ )
                           Wt = cons(1,Wt);
           }
           Tdeg = w_tdeg(F,V,Wt);
           WtV = newvect(2*(N+1)+1);
           WtV[0] = Tdeg;
           WtV[N+1] = 1;
           /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
           for ( I = 1; I <= N; I++ ) {
                   WtV[I] = Wt[I-1];
                   WtV[N+1+I] = Tdeg-Wt[I-1]+1;
           }
           WtV[2*(N+1)] = 1;
           dp_set_weight(WtV);
           for ( I = N-1, DV = []; I >= 0; I-- )
                   DV = cons(strtov("d"+rtostr(V[I])),DV);
   
           B = [t-F];
           for ( I = 0; I < N; I++ ) {
                   B = cons(DV[I]+diff(F,V[I])*dt,B);
           }
           V1 = cons(t,V); DV1 = cons(dt,DV);
           W = newvect(N+1);
           W[0] = 1;
           R = generic_bfct_1(B,V1,DV1,W);
           dp_set_weight(0);
           return subst(R,s,-s-1);
   }
   
   /* use an order s.t. [x,y,z,...,t,dx,dy,dz,...,dt,h] */
   
   def bfct_via_gbfct_weight_1(F,V)
   {
           N = length(V);
           D = newvect(N);
           Wt = getopt(weight);
           if ( type(Wt) != 4 ) {
                   for ( I = 0, Wt = []; I < N; I++ )
                           Wt = cons(1,Wt);
           }
           Tdeg = w_tdeg(F,V,Wt);
           WtV = newvect(2*(N+1)+1);
           /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
           for ( I = 0; I < N; I++ ) {
                   WtV[I] = Wt[I];
                   WtV[N+1+I] = Tdeg-Wt[I]+1;
           }
           WtV[N] = Tdeg;
           WtV[2*N+1] = 1;
           WtV[2*(N+1)] = 1;
           dp_set_weight(WtV);
           for ( I = N-1, DV = []; I >= 0; I-- )
                   DV = cons(strtov("d"+rtostr(V[I])),DV);
   
           B = [t-F];
           for ( I = 0; I < N; I++ ) {
                   B = cons(DV[I]+diff(F,V[I])*dt,B);
           }
           V1 = append(V,[t]); DV1 = append(DV,[dt]);
           W = newvect(N+1);
           W[N] = 1;
         R = generic_bfct(B,V1,DV1,W);          R = generic_bfct(B,V1,DV1,W);
           dp_set_weight(0);
           return subst(R,s,-s-1);
   }
   
   def bfct_via_gbfct_weight_2(F,V)
   {
           N = length(V);
           D = newvect(N);
           Wt = getopt(weight);
           if ( type(Wt) != 4 ) {
                   for ( I = 0, Wt = []; I < N; I++ )
                           Wt = cons(1,Wt);
           }
           Tdeg = w_tdeg(F,V,Wt);
   
           /* a weight for the first GB computation */
           /* [t,x1,...,xn,dt,dx1,...,dxn,h] */
           WtV = newvect(2*(N+1)+1);
           WtV[0] = Tdeg;
           WtV[N+1] = 1;
           WtV[2*(N+1)] = 1;
           /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
           for ( I = 1; I <= N; I++ ) {
                   WtV[I] = Wt[I-1];
                   WtV[N+1+I] = Tdeg-Wt[I-1]+1;
           }
           dp_set_weight(WtV);
   
           /* a weight for the second GB computation */
           /* [x1,...,xn,t,dx1,...,dxn,dt,h] */
           WtV2 = newvect(2*(N+1)+1);
           WtV2[N] = Tdeg;
           WtV2[2*N+1] = 1;
           WtV2[2*(N+1)] = 1;
           for ( I = 0; I < N; I++ ) {
                   WtV2[I] = Wt[I];
                   WtV2[N+1+I] = Tdeg-Wt[I]+1;
           }
   
           for ( I = N-1, DV = []; I >= 0; I-- )
                   DV = cons(strtov("d"+rtostr(V[I])),DV);
   
           B = [t-F];
           for ( I = 0; I < N; I++ ) {
                   B = cons(DV[I]+diff(F,V[I])*dt,B);
           }
           V1 = cons(t,V); DV1 = cons(dt,DV);
           V2 = append(V,[t]); DV2 = append(DV,[dt]);
           W = newvect(N+1,[1]);
           dp_weyl_set_weight(W);
   
           VDV = append(V1,DV1);
           N1 = length(V1);
           N2 = N1*2;
   
           /* create a non-term order MW in D<x,d> */
           MW = newmat(N2+1,N2);
           for ( J = 0; J < N1; J++ ) {
                   MW[0][J] = -W[J]; MW[0][N1+J] = W[J];
           }
           for ( J = 0; J < N2; J++ ) MW[1][J] = 1;
           for ( I = 2; I <= N2; I++ ) MW[I][N2-I+1] = -1;
   
           /* homogenize F */
           VDVH = append(VDV,[h]);
           FH = map(dp_dtop,map(dp_homo,map(dp_ptod,B,VDV)),VDVH);
   
           /* compute a groebner basis of FH w.r.t. MWH */
           GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
   
           /* dehomigenize GH */
           G = map(subst,GH,h,1);
   
           /* G is a groebner basis w.r.t. a non term order MW */
           /* take the initial part w.r.t. (-W,W) */
           GIN = map(initial_part,G,VDV,MW,W);
   
           /* GIN is a groebner basis w.r.t. a term order M */
           /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
   
           /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
           for ( I = 0, T = 0; I < N1; I++ )
                   T += W[I]*V1[I]*DV1[I];
   
           /* change of ordering from VDV to VDV2 */
           VDV2 = append(V2,DV2);
           dp_set_weight(WtV2);
           GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-1,0);
   
           R = weyl_minipoly(GIN2,VDV2,0,T); /* M represents DRL order */
           dp_set_weight(0);
         return subst(R,s,-s-1);          return subst(R,s,-s-1);
 }  }
   
Line 369  def weyl_minipolym(G,V,O,M,V0)
Line 597  def weyl_minipolym(G,V,O,M,V0)
                 GI = cons(I,GI);                  GI = cons(I,GI);
   
         U = dp_mod(dp_ptod(V0,V),M,[]);          U = dp_mod(dp_ptod(V0,V),M,[]);
           U = dp_weyl_nf_mod(GI,U,PS,1,M);
   
         T = dp_mod(<<0>>,M,[]);          T = dp_mod(<<0>>,M,[]);
         TT = dp_mod(dp_ptod(1,V),M,[]);          TT = dp_mod(dp_ptod(1,V),M,[]);
Line 548  def v_factorial(V,N)
Line 777  def v_factorial(V,N)
 {  {
         for ( J = N-1, R = 1; J >= 0; J-- )          for ( J = N-1, R = 1; J >= 0; J-- )
                 R *= V-J;                  R *= V-J;
           return R;
   }
   
   def w_tdeg(F,V,W)
   {
           dp_set_weight(newvect(length(W),W));
           T = dp_ptod(F,V);
           for ( R = 0; T; T = cdr(T) ) {
                   D = dp_td(T);
                   if ( D > R ) R = D;
           }
         return R;          return R;
 }  }
 end$  end$

Legend:
Removed from v.1.16  
changed lines
  Added in v.1.19

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>