version 1.18, 2002/01/28 02:42:27 |
version 1.22, 2003/04/20 08:54:28 |
|
|
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* |
* |
* $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.17 2002/01/28 01:02:03 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.21 2002/01/30 02:12:58 noro Exp $ |
*/ |
*/ |
/* requires 'primdec' */ |
/* requires 'primdec' */ |
|
|
|
extern LIBRARY_GR_LOADED$ |
|
extern LIBRARY_PRIMDEC_LOADED$ |
|
|
|
if(!LIBRARY_GR_LOADED) load("gr"); else ; LIBRARY_GR_LOADED = 1$ |
|
if(!LIBRARY_PRIMDEC_LOADED) load("primdec"); else ; LIBRARY_PRIMDEC_LOADED = 1$ |
|
|
|
/* toplevel */ |
|
|
|
def bfunction(F) |
|
{ |
|
V = vars(F); |
|
N = length(V); |
|
D = newvect(N); |
|
|
|
for ( I = 0; I < N; I++ ) |
|
D[I] = [deg(F,V[I]),V[I]]; |
|
qsort(D,compare_first); |
|
for ( V = [], I = 0; I < N; I++ ) |
|
V = cons(D[I][1],V); |
|
return bfct_via_gbfct_weight(F,V); |
|
} |
|
|
/* annihilating ideal of F^s */ |
/* annihilating ideal of F^s */ |
|
|
def ann(F) |
def ann(F) |
Line 410 def bfct_via_gbfct(F) |
|
Line 432 def bfct_via_gbfct(F) |
|
V1 = cons(t,V); DV1 = cons(dt,DV); |
V1 = cons(t,V); DV1 = cons(dt,DV); |
W = newvect(N+1); |
W = newvect(N+1); |
W[0] = 1; |
W[0] = 1; |
R = generic_bfct_1(B,V1,DV1,W); |
R = generic_bfct(B,V1,DV1,W); |
|
|
return subst(R,s,-s-1); |
return subst(R,s,-s-1); |
} |
} |
Line 484 def bfct_via_gbfct_weight_1(F,V) |
|
Line 506 def bfct_via_gbfct_weight_1(F,V) |
|
V1 = append(V,[t]); DV1 = append(DV,[dt]); |
V1 = append(V,[t]); DV1 = append(DV,[dt]); |
W = newvect(N+1); |
W = newvect(N+1); |
W[N] = 1; |
W[N] = 1; |
R = generic_bfct(B,V1,DV1,W); |
R = generic_bfct_1(B,V1,DV1,W); |
dp_set_weight(0); |
dp_set_weight(0); |
return subst(R,s,-s-1); |
return subst(R,s,-s-1); |
} |
} |
|
|
|
def bfct_via_gbfct_weight_2(F,V) |
|
{ |
|
N = length(V); |
|
D = newvect(N); |
|
Wt = getopt(weight); |
|
if ( type(Wt) != 4 ) { |
|
for ( I = 0, Wt = []; I < N; I++ ) |
|
Wt = cons(1,Wt); |
|
} |
|
Tdeg = w_tdeg(F,V,Wt); |
|
|
|
/* a weight for the first GB computation */ |
|
/* [t,x1,...,xn,dt,dx1,...,dxn,h] */ |
|
WtV = newvect(2*(N+1)+1); |
|
WtV[0] = Tdeg; |
|
WtV[N+1] = 1; |
|
WtV[2*(N+1)] = 1; |
|
/* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */ |
|
for ( I = 1; I <= N; I++ ) { |
|
WtV[I] = Wt[I-1]; |
|
WtV[N+1+I] = Tdeg-Wt[I-1]+1; |
|
} |
|
dp_set_weight(WtV); |
|
|
|
/* a weight for the second GB computation */ |
|
/* [x1,...,xn,t,dx1,...,dxn,dt,h] */ |
|
WtV2 = newvect(2*(N+1)+1); |
|
WtV2[N] = Tdeg; |
|
WtV2[2*N+1] = 1; |
|
WtV2[2*(N+1)] = 1; |
|
for ( I = 0; I < N; I++ ) { |
|
WtV2[I] = Wt[I]; |
|
WtV2[N+1+I] = Tdeg-Wt[I]+1; |
|
} |
|
|
|
for ( I = N-1, DV = []; I >= 0; I-- ) |
|
DV = cons(strtov("d"+rtostr(V[I])),DV); |
|
|
|
B = [t-F]; |
|
for ( I = 0; I < N; I++ ) { |
|
B = cons(DV[I]+diff(F,V[I])*dt,B); |
|
} |
|
V1 = cons(t,V); DV1 = cons(dt,DV); |
|
V2 = append(V,[t]); DV2 = append(DV,[dt]); |
|
W = newvect(N+1,[1]); |
|
dp_weyl_set_weight(W); |
|
|
|
VDV = append(V1,DV1); |
|
N1 = length(V1); |
|
N2 = N1*2; |
|
|
|
/* create a non-term order MW in D<x,d> */ |
|
MW = newmat(N2+1,N2); |
|
for ( J = 0; J < N1; J++ ) { |
|
MW[0][J] = -W[J]; MW[0][N1+J] = W[J]; |
|
} |
|
for ( J = 0; J < N2; J++ ) MW[1][J] = 1; |
|
for ( I = 2; I <= N2; I++ ) MW[I][N2-I+1] = -1; |
|
|
|
/* homogenize F */ |
|
VDVH = append(VDV,[h]); |
|
FH = map(dp_dtop,map(dp_homo,map(dp_ptod,B,VDV)),VDVH); |
|
|
|
/* compute a groebner basis of FH w.r.t. MWH */ |
|
GH = dp_weyl_gr_main(FH,VDVH,0,1,11); |
|
|
|
/* dehomigenize GH */ |
|
G = map(subst,GH,h,1); |
|
|
|
/* G is a groebner basis w.r.t. a non term order MW */ |
|
/* take the initial part w.r.t. (-W,W) */ |
|
GIN = map(initial_part,G,VDV,MW,W); |
|
|
|
/* GIN is a groebner basis w.r.t. a term order M */ |
|
/* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */ |
|
|
|
/* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */ |
|
for ( I = 0, T = 0; I < N1; I++ ) |
|
T += W[I]*V1[I]*DV1[I]; |
|
|
|
/* change of ordering from VDV to VDV2 */ |
|
VDV2 = append(V2,DV2); |
|
dp_set_weight(WtV2); |
|
for ( Pind = 0; ; Pind++ ) { |
|
Prime = lprime(Pind); |
|
GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-Prime,0); |
|
if ( GIN2 ) break; |
|
} |
|
|
|
R = weyl_minipoly(GIN2,VDV2,0,T); /* M represents DRL order */ |
|
dp_set_weight(0); |
|
return subst(R,s,-s-1); |
|
} |
|
|
def weyl_minipolym(G,V,O,M,V0) |
def weyl_minipolym(G,V,O,M,V0) |
{ |
{ |
N = length(V); |
N = length(V); |
Line 542 def weyl_minipoly(G0,V0,O0,P) |
|
Line 658 def weyl_minipoly(G0,V0,O0,P) |
|
PS[I] = dp_ptod(car(T),V0); |
PS[I] = dp_ptod(car(T),V0); |
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
GI = cons(I,GI); |
GI = cons(I,GI); |
|
PSM = newvect(Len); |
DP = dp_ptod(P,V0); |
DP = dp_ptod(P,V0); |
|
|
for ( I = 0; ; I++ ) { |
for ( Pind = 0; ; Pind++ ) { |
Prime = lprime(I); |
Prime = lprime(Pind); |
if ( !valid_modulus(HM,Prime) ) |
if ( !valid_modulus(HM,Prime) ) |
continue; |
continue; |
MP = weyl_minipolym(G0,V0,O0,Prime,P); |
setmod(Prime); |
D = deg(MP,var(MP)); |
for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ ) |
|
PSM[I] = dp_mod(dp_ptod(car(T),V0),Prime,[]); |
|
|
NFP = weyl_nf(GI,DP,1,PS); |
NFP = weyl_nf(GI,DP,1,PS); |
|
NFPM = dp_mod(NFP[0],Prime,[])/ptomp(NFP[1],Prime); |
|
|
NF = [[dp_ptod(1,V0),1]]; |
NF = [[dp_ptod(1,V0),1]]; |
LCM = 1; |
LCM = 1; |
|
|
for ( J = 1; J <= D; J++ ) { |
TM = dp_mod(<<0>>,Prime,[]); |
|
TTM = dp_mod(dp_ptod(1,V0),Prime,[]); |
|
GM = NFM = [[TTM,TM]]; |
|
|
|
for ( D = 1; ; D++ ) { |
if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
print(".",2); |
print(".",2); |
NFPrev = car(NF); |
NFPrev = car(NF); |
Line 564 def weyl_minipoly(G0,V0,O0,P) |
|
Line 688 def weyl_minipoly(G0,V0,O0,P) |
|
NFJ = remove_cont(NFJ); |
NFJ = remove_cont(NFJ); |
NF = cons(NFJ,NF); |
NF = cons(NFJ,NF); |
LCM = ilcm(LCM,NFJ[1]); |
LCM = ilcm(LCM,NFJ[1]); |
|
|
|
/* modular computation */ |
|
TM = dp_mod(<<D>>,Prime,[]); |
|
TTM = dp_mod(NFJ[0],Prime,[])/ptomp(NFJ[1],Prime); |
|
NFM = cons([TTM,TM],NFM); |
|
LM = dp_lnf_mod([TTM,TM],GM,Prime); |
|
if ( !LM[0] ) |
|
break; |
|
else |
|
GM = insert(GM,LM); |
} |
} |
|
|
if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
print(""); |
print(""); |
U = NF[0][0]*idiv(LCM,NF[0][1]); |
U = NF[0][0]*idiv(LCM,NF[0][1]); |