| version 1.13, 2000/12/27 07:17:39 |
version 1.15, 2001/01/11 08:43:23 |
|
|
| * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| * |
* |
| * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.12 2000/12/15 07:15:18 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.14 2001/01/10 04:30:35 noro Exp $ |
| */ |
*/ |
| /* requires 'primdec' */ |
/* requires 'primdec' */ |
| |
|
| Line 212 def generic_bfct(F,V,DV,W) |
|
| Line 212 def generic_bfct(F,V,DV,W) |
|
| N = length(V); |
N = length(V); |
| N2 = N*2; |
N2 = N*2; |
| |
|
| /* create a term order M in D<x,d> */ |
dp_weyl_set_weight(W); |
| |
|
| |
/* create a term order M in D<x,d> (DRL) */ |
| M = newmat(N2,N2); |
M = newmat(N2,N2); |
| for ( J = 0; J < N2; J++ ) |
for ( J = 0; J < N2; J++ ) |
| M[0][J] = 1; |
M[0][J] = 1; |
| Line 244 def generic_bfct(F,V,DV,W) |
|
| Line 246 def generic_bfct(F,V,DV,W) |
|
| FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH); |
FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH); |
| |
|
| /* compute a groebner basis of FH w.r.t. MWH */ |
/* compute a groebner basis of FH w.r.t. MWH */ |
| GH = dp_weyl_gr_main(FH,VDVH,0,0,MWH); |
dp_gr_flags(["Top",1,"NoRA",1]); |
| |
GH = dp_weyl_gr_main(FH,VDVH,0,1,11); |
| |
dp_gr_flags(["Top",0,"NoRA",0]); |
| |
|
| /* dehomigenize GH */ |
/* dehomigenize GH */ |
| G = map(subst,GH,h,1); |
G = map(subst,GH,h,1); |
| Line 259 def generic_bfct(F,V,DV,W) |
|
| Line 263 def generic_bfct(F,V,DV,W) |
|
| /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */ |
/* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */ |
| for ( I = 0, T = 0; I < N; I++ ) |
for ( I = 0, T = 0; I < N; I++ ) |
| T += W[I]*V[I]*DV[I]; |
T += W[I]*V[I]*DV[I]; |
| B = weyl_minipoly(GIN,VDV,M,T); |
B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */ |
| return B; |
return B; |
| } |
} |
| |
|
|
|
| return Minipoly; |
return Minipoly; |
| } |
} |
| |
|
| |
/* b-function computation via generic_bfct() (experimental) */ |
| |
|
| |
def bfct_via_gbfct(F) |
| |
{ |
| |
V = vars(F); |
| |
N = length(V); |
| |
D = newvect(N); |
| |
|
| |
for ( I = 0; I < N; I++ ) |
| |
D[I] = [deg(F,V[I]),V[I]]; |
| |
qsort(D,compare_first); |
| |
for ( V = [], I = 0; I < N; I++ ) |
| |
V = cons(D[I][1],V); |
| |
V = reverse(V); |
| |
for ( I = N-1, DV = []; I >= 0; I-- ) |
| |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
| |
|
| |
B = [t-F]; |
| |
for ( I = 0; I < N; I++ ) { |
| |
B = cons(DV[I]+diff(F,V[I])*dt,B); |
| |
} |
| |
V1 = cons(t,V); DV1 = cons(dt,DV); |
| |
W = newvect(N+1); |
| |
W[0] = 1; |
| |
R = generic_bfct(B,V1,DV1,W); |
| |
|
| |
return subst(R,s,-s-1); |
| |
} |
| |
|
| def weyl_minipolym(G,V,O,M,V0) |
def weyl_minipolym(G,V,O,M,V0) |
| { |
{ |
| N = length(V); |
N = length(V); |
| Line 339 def weyl_minipolym(G,V,O,M,V0) |
|
| Line 372 def weyl_minipolym(G,V,O,M,V0) |
|
| G = H = [[TT,T]]; |
G = H = [[TT,T]]; |
| |
|
| for ( I = 1; ; I++ ) { |
for ( I = 1; ; I++ ) { |
| |
if ( dp_gr_print() ) |
| |
print(".",2); |
| T = dp_mod(<<I>>,M,[]); |
T = dp_mod(<<I>>,M,[]); |
| |
|
| TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M); |
TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M); |
| H = cons([TT,T],H); |
H = cons([TT,T],H); |
| L = dp_lnf_mod([TT,T],G,M); |
L = dp_lnf_mod([TT,T],G,M); |
| if ( !L[0] ) |
if ( !L[0] ) { |
| |
if ( dp_gr_print() ) |
| |
print(""); |
| return dp_dtop(L[1],[t]); /* XXX */ |
return dp_dtop(L[1],[t]); /* XXX */ |
| else |
} else |
| G = insert(G,L); |
G = insert(G,L); |
| } |
} |
| } |
} |
| Line 377 def weyl_minipoly(G0,V0,O0,P) |
|
| Line 414 def weyl_minipoly(G0,V0,O0,P) |
|
| LCM = 1; |
LCM = 1; |
| |
|
| for ( J = 1; J <= D; J++ ) { |
for ( J = 1; J <= D; J++ ) { |
| |
if ( dp_gr_print() ) |
| |
print(".",2); |
| NFPrev = car(NF); |
NFPrev = car(NF); |
| NFJ = weyl_nf(GI, |
NFJ = weyl_nf(GI, |
| dp_weyl_mul(NFP[0],NFPrev[0]),NFP[1]*NFPrev[1],PS); |
dp_weyl_mul(NFP[0],NFPrev[0]),NFP[1]*NFPrev[1],PS); |
| Line 384 def weyl_minipoly(G0,V0,O0,P) |
|
| Line 423 def weyl_minipoly(G0,V0,O0,P) |
|
| NF = cons(NFJ,NF); |
NF = cons(NFJ,NF); |
| LCM = ilcm(LCM,NFJ[1]); |
LCM = ilcm(LCM,NFJ[1]); |
| } |
} |
| |
if ( dp_gr_print() ) |
| |
print(""); |
| U = NF[0][0]*idiv(LCM,NF[0][1]); |
U = NF[0][0]*idiv(LCM,NF[0][1]); |
| Coef = []; |
Coef = []; |
| for ( J = D-1; J >= 0; J-- ) { |
for ( J = D-1; J >= 0; J-- ) { |