| version 1.10, 2000/12/15 01:34:31 |
version 1.12, 2000/12/15 07:15:18 |
|
|
| * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| * |
* |
| * $OpenXM$ |
* $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.11 2000/12/15 01:52:36 noro Exp $ |
| */ |
*/ |
| /* requires 'primdec' */ |
/* requires 'primdec' */ |
| |
|
|
|
| if ( !member(y1,VL) && !member(y2,VL) ) |
if ( !member(y1,VL) && !member(y2,VL) ) |
| G1 = cons(E,G1); |
G1 = cons(E,G1); |
| } |
} |
| G2 = map(subst,G1,dt,1); |
G2 = map(psi,G1,t,dt); |
| G3 = map(b_subst,G2,t); |
G3 = map(subst,G2,t,-1-s); |
| G4 = map(subst,G3,t,-1-s); |
return G3; |
| return G4; |
|
| } |
} |
| |
|
| /* |
/* |
|
|
| if ( !member(y1,VL) && !member(y2,VL) ) |
if ( !member(y1,VL) && !member(y2,VL) ) |
| G1 = cons(E,G1); |
G1 = cons(E,G1); |
| } |
} |
| G2 = map(subst,G1,dt,1); |
G2 = map(psi,G1,t,dt); |
| G3 = map(b_subst,G2,t); |
G3 = map(subst,G2,t,-1-s); |
| G4 = map(subst,G3,t,-1-s); |
|
| |
|
| /* G4 = J_f(s) */ |
/* G3 = J_f(s) */ |
| |
|
| V1 = cons(s,V); DV1 = cons(ds,DV); V1DV1 = append(V1,DV1); |
V1 = cons(s,V); DV1 = cons(ds,DV); V1DV1 = append(V1,DV1); |
| G5 = dp_weyl_gr_main(cons(F,G4),V1DV1,0,1,0); |
G4 = dp_weyl_gr_main(cons(F,G3),V1DV1,0,1,0); |
| Bf = weyl_minipoly(G5,V1DV1,0,s); |
Bf = weyl_minipoly(G4,V1DV1,0,s); |
| |
|
| FList = cdr(fctr(Bf)); |
FList = cdr(fctr(Bf)); |
| for ( T = FList, Min = 0; T != []; T = cdr(T) ) { |
for ( T = FList, Min = 0; T != []; T = cdr(T) ) { |
|
|
| if ( dn(Root) == 1 && Root < Min ) |
if ( dn(Root) == 1 && Root < Min ) |
| Min = Root; |
Min = Root; |
| } |
} |
| return [Min,map(subst,G4,s,Min)]; |
return [Min,map(subst,G3,s,Min)]; |
| } |
} |
| |
|
| def indicial1(F,V) |
def indicial1(F,V) |
| Line 164 def indicial1(F,V) |
|
| Line 162 def indicial1(F,V) |
|
| /* homogenized (heuristics) */ |
/* homogenized (heuristics) */ |
| G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); |
G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); |
| G1 = map(subst,G0,y1,1); |
G1 = map(subst,G0,y1,1); |
| Mat = newmat(2,2,[[-1,1],[0,1]]); |
|
| G2 = map(psi,G1,t,dt); |
G2 = map(psi,G1,t,dt); |
| G3 = map(subst,G2,t,-s-1); |
G3 = map(subst,G2,t,-s-1); |
| return G3; |
return G3; |
| Line 269 def weyl_minipolym(G,V,O,M,V0) |
|
| Line 266 def weyl_minipolym(G,V,O,M,V0) |
|
| |
|
| def weyl_minipoly(G0,V0,O0,V) |
def weyl_minipoly(G0,V0,O0,V) |
| { |
{ |
| |
HM = hmlist(G0,V0,O0); |
| for ( I = 0; ; I++ ) { |
for ( I = 0; ; I++ ) { |
| Prime = lprime(I); |
Prime = lprime(I); |
| |
if ( !valid_modulus(HM,Prime) ) |
| |
continue; |
| MP = weyl_minipolym(G0,V0,O0,Prime,V); |
MP = weyl_minipolym(G0,V0,O0,Prime,V); |
| for ( D = deg(MP,V), TL = [], J = 0; J <= D; J++ ) |
for ( D = deg(MP,V), TL = [], J = 0; J <= D; J++ ) |
| TL = cons(V^J,TL); |
TL = cons(V^J,TL); |