| version 1.1, 2000/06/05 04:59:34 |
version 1.7, 2000/12/14 01:38:37 |
|
|
| /* $OpenXM$ */ |
/* |
| |
* Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED |
| |
* All rights reserved. |
| |
* |
| |
* FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, |
| |
* non-exclusive and royalty-free license to use, copy, modify and |
| |
* redistribute, solely for non-commercial and non-profit purposes, the |
| |
* computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and |
| |
* conditions of this Agreement. For the avoidance of doubt, you acquire |
| |
* only a limited right to use the SOFTWARE hereunder, and FLL or any |
| |
* third party developer retains all rights, including but not limited to |
| |
* copyrights, in and to the SOFTWARE. |
| |
* |
| |
* (1) FLL does not grant you a license in any way for commercial |
| |
* purposes. You may use the SOFTWARE only for non-commercial and |
| |
* non-profit purposes only, such as academic, research and internal |
| |
* business use. |
| |
* (2) The SOFTWARE is protected by the Copyright Law of Japan and |
| |
* international copyright treaties. If you make copies of the SOFTWARE, |
| |
* with or without modification, as permitted hereunder, you shall affix |
| |
* to all such copies of the SOFTWARE the above copyright notice. |
| |
* (3) An explicit reference to this SOFTWARE and its copyright owner |
| |
* shall be made on your publication or presentation in any form of the |
| |
* results obtained by use of the SOFTWARE. |
| |
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
| |
* e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification |
| |
* for such modification or the source code of the modified part of the |
| |
* SOFTWARE. |
| |
* |
| |
* THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL |
| |
* MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND |
| |
* EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS |
| |
* FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' |
| |
* RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY |
| |
* MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. |
| |
* UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, |
| |
* OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY |
| |
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL |
| |
* DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES |
| |
* ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES |
| |
* FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY |
| |
* DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF |
| |
* SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART |
| |
* OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY |
| |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| |
* |
| |
* $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.6 2000/12/13 05:37:31 noro Exp $ |
| |
*/ |
| /* requires 'primdec' */ |
/* requires 'primdec' */ |
| |
|
| /* annihilating ideal of F^s ? */ |
/* annihilating ideal of F^s */ |
| |
|
| def ann(F) |
def ann(F) |
| { |
{ |
|
|
| for ( I = 0; I < N; I++ ) { |
for ( I = 0; I < N; I++ ) { |
| B = cons(DV[I]+y1*diff(F,V[I])*dt,B); |
B = cons(DV[I]+y1*diff(F,V[I])*dt,B); |
| } |
} |
| ctrl("do_weyl",1); |
|
| dp_nelim(2); |
dp_nelim(2); |
| G0 = dp_gr_main(B,append(W,DW),0,0,6); |
G0 = dp_weyl_gr_main(B,append(W,DW),0,0,6); |
| G1 = []; |
G1 = []; |
| for ( T = G0; T != []; T = cdr(T) ) { |
for ( T = G0; T != []; T = cdr(T) ) { |
| E = car(T); VL = vars(E); |
E = car(T); VL = vars(E); |
|
|
| G2 = map(subst,G1,dt,1); |
G2 = map(subst,G1,dt,1); |
| G3 = map(b_subst,G2,t); |
G3 = map(b_subst,G2,t); |
| G4 = map(subst,G3,t,-1-s); |
G4 = map(subst,G3,t,-1-s); |
| ctrl("do_weyl",0); |
|
| return G4; |
return G4; |
| } |
} |
| |
|
| |
def indicial1(F,V) |
| |
{ |
| |
V = vars(F); |
| |
W = append([y1,t],V); |
| |
N = length(V); |
| |
B = [t-y1*F]; |
| |
for ( I = N-1, DV = []; I >= 0; I-- ) |
| |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
| |
DW = append([dy1,dt],DV); |
| |
for ( I = 0; I < N; I++ ) { |
| |
B = cons(DV[I]+y1*diff(F,V[I])*dt,B); |
| |
} |
| |
dp_nelim(1); |
| |
/* we use homogenization (heuristically determined) */ |
| |
G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); |
| |
G1 = map(subst,G0,y1,1); |
| |
Mat = newmat(2,2,[[-1,1],[0,1]]); |
| |
G2 = map(psi,G1,t,dt); |
| |
G3 = map(subst,G2,t,-s-1); |
| |
return G3; |
| |
} |
| |
|
| |
def psi(F,T,DT) |
| |
{ |
| |
D = dp_ptod(F,[T,DT]); |
| |
Wmax = weight(D); |
| |
D1 = dp_rest(D); |
| |
for ( ; D1; D1 = dp_rest(D1) ) |
| |
if ( weight(D1) > Wmax ) |
| |
Wmax = weight(D1); |
| |
for ( D1 = D, Dmax = 0; D1; D1 = dp_rest(D1) ) |
| |
if ( weight(D1) == Wmax ) |
| |
Dmax += dp_hm(D1); |
| |
if ( Wmax >= 0 ) |
| |
Dmax = dp_weyl_mul(<<Wmax,0>>,Dmax); |
| |
else |
| |
Dmax = dp_weyl_mul(<<0,-Wmax>>,Dmax); |
| |
Rmax = dp_dtop(Dmax,[T,DT]); |
| |
R = b_subst(subst(Rmax,DT,1),T); |
| |
return R; |
| |
} |
| |
|
| |
def weight(D) |
| |
{ |
| |
V = dp_etov(D); |
| |
return V[1]-V[0]; |
| |
} |
| |
|
| |
def compare_first(A,B) |
| |
{ |
| |
A0 = car(A); |
| |
B0 = car(B); |
| |
if ( A0 > B0 ) |
| |
return 1; |
| |
else if ( A0 < B0 ) |
| |
return -1; |
| |
else |
| |
return 0; |
| |
} |
| |
|
| /* b-function of F ? */ |
/* b-function of F ? */ |
| |
|
| def bfct(F) |
def bfct(F) |
| { |
{ |
| G4 = ann(F); |
|
| |
|
| ctrl("do_weyl",1); |
|
| V = vars(F); |
V = vars(F); |
| N = length(V); |
N = length(V); |
| |
D = newvect(N); |
| |
|
| |
for ( I = 0; I < N; I++ ) |
| |
D[I] = [deg(F,V[I]),V[I]]; |
| |
qsort(D,compare_first); |
| |
for ( V = [], I = 0; I < N; I++ ) |
| |
V = cons(D[I][1],V); |
| for ( I = N-1, DV = []; I >= 0; I-- ) |
for ( I = N-1, DV = []; I >= 0; I-- ) |
| DV = cons(strtov("d"+rtostr(V[I])),DV); |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
| |
V1 = cons(s,V); DV1 = cons(ds,DV); |
| |
|
| N1 = 2*(N+1); |
G0 = indicial1(F,reverse(V)); |
| |
G1 = dp_weyl_gr_main(G0,append(V1,DV1),0,1,0); |
| |
Minipoly = weyl_minipoly(G1,append(V1,DV1),0,s); |
| |
return Minipoly; |
| |
} |
| |
|
| M = newmat(N1+1,N1); |
def weyl_minipolym(G,V,O,M,V0) |
| for ( J = N+1; J < N1; J++ ) |
{ |
| M[0][J] = 1; |
N = length(V); |
| for ( J = 0; J < N+1; J++ ) |
Len = length(G); |
| M[1][J] = 1; |
dp_ord(O); |
| #if 0 |
setmod(M); |
| for ( I = 0; I < N+1; I++ ) |
PS = newvect(Len); |
| M[I+2][N-I] = -1; |
PS0 = newvect(Len); |
| for ( I = 0; I < N; I++ ) |
|
| M[I+2+N+1][N1-1-I] = -1; |
for ( I = 0, T = G; T != []; T = cdr(T), I++ ) |
| #elif 1 |
PS0[I] = dp_ptod(car(T),V); |
| for ( I = 0; I < N1-1; I++ ) |
for ( I = 0, T = G; T != []; T = cdr(T), I++ ) |
| M[I+2][N1-I-1] = 1; |
PS[I] = dp_mod(dp_ptod(car(T),V),M,[]); |
| #else |
|
| for ( I = 0; I < N1-1; I++ ) |
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
| M[I+2][I] = 1; |
GI = cons(I,GI); |
| #endif |
|
| V1 = cons(s,V); DV1 = cons(ds,DV); |
U = dp_mod(dp_ptod(V0,V),M,[]); |
| G5 = dp_gr_main(cons(F,G4),append(V1,DV1),0,0,M); |
|
| for ( T = G5, G6 = []; T != []; T = cdr(T) ) { |
T = dp_mod(<<0>>,M,[]); |
| E = car(T); |
TT = dp_mod(dp_ptod(1,V),M,[]); |
| if ( intersection(vars(E),DV1) == [] ) |
G = H = [[TT,T]]; |
| G6 = cons(E,G6); |
|
| |
for ( I = 1; ; I++ ) { |
| |
T = dp_mod(<<I>>,M,[]); |
| |
|
| |
TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M); |
| |
H = cons([TT,T],H); |
| |
L = dp_lnf_mod([TT,T],G,M); |
| |
if ( !L[0] ) |
| |
return dp_dtop(L[1],[V0]); |
| |
else |
| |
G = insert(G,L); |
| } |
} |
| ctrl("do_weyl",0); |
} |
| G6_0 = remove_zero(map(z_subst,G6,V)); |
|
| F0 = flatmf(cdr(fctr(dp_gr_main(G6_0,[s],0,0,0)[0]))); |
def weyl_minipoly(G0,V0,O0,V) |
| for ( T = F0, BF = []; T != []; T = cdr(T) ) { |
{ |
| FI = car(T); |
for ( I = 0; ; I++ ) { |
| for ( J = 1; ; J++ ) { |
Prime = lprime(I); |
| S = map(srem,map(z_subst,idealquo(G6,[FI^J],V1,0),V),FI); |
MP = weyl_minipolym(G0,V0,O0,Prime,V); |
| for ( ; S != [] && !car(S); S = cdr(S) ); |
for ( D = deg(MP,V), TL = [], J = 0; J <= D; J++ ) |
| if ( S != [] ) |
TL = cons(V^J,TL); |
| |
dp_ord(O0); |
| |
NF = weyl_gennf(G0,TL,V0,O0)[0]; |
| |
|
| |
LHS = weyl_nf_tab(-car(TL),NF,V0); |
| |
B = weyl_hen_ttob(cdr(TL),NF,LHS,V0,Prime); |
| |
if ( B ) { |
| |
R = ptozp(B[1]*car(TL)+B[0]); |
| |
return R; |
| |
} |
| |
} |
| |
} |
| |
|
| |
def weyl_gennf(G,TL,V,O) |
| |
{ |
| |
N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); |
| |
for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { |
| |
PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); |
| |
} |
| |
for ( I = 0, DTL = []; TL != []; TL = cdr(TL) ) |
| |
DTL = cons(dp_ptod(car(TL),V),DTL); |
| |
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
| |
GI = cons(I,GI); |
| |
T = car(DTL); DTL = cdr(DTL); |
| |
H = [weyl_nf(GI,T,T,PS)]; |
| |
|
| |
T0 = time()[0]; |
| |
while ( DTL != [] ) { |
| |
T = car(DTL); DTL = cdr(DTL); |
| |
if ( dp_gr_print() ) |
| |
print(".",2); |
| |
if ( L = search_redble(T,H) ) { |
| |
DD = dp_subd(T,L[1]); |
| |
NF = weyl_nf(GI,dp_weyl_mul(L[0],dp_subd(T,L[1])),dp_hc(L[1])*T,PS); |
| |
} else |
| |
NF = weyl_nf(GI,T,T,PS); |
| |
NF = remove_cont(NF); |
| |
H = cons(NF,H); |
| |
} |
| |
print(""); |
| |
TNF = time()[0]-T0; |
| |
if ( dp_gr_print() ) |
| |
print("gennf(TAB="+rtostr(TTAB)+" NF="+rtostr(TNF)+")"); |
| |
return [H,PS,GI]; |
| |
} |
| |
|
| |
def weyl_nf(B,G,M,PS) |
| |
{ |
| |
for ( D = 0; G; ) { |
| |
for ( U = 0, L = B; L != []; L = cdr(L) ) { |
| |
if ( dp_redble(G,R=PS[car(L)]) > 0 ) { |
| |
GCD = igcd(dp_hc(G),dp_hc(R)); |
| |
CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD); |
| |
U = CG*G-dp_weyl_mul(CR*dp_subd(G,R),R); |
| |
if ( !U ) |
| |
return [D,M]; |
| |
D *= CG; M *= CG; |
| break; |
break; |
| |
} |
| } |
} |
| BF = cons([FI,J],BF); |
if ( U ) |
| |
G = U; |
| |
else { |
| |
D += dp_hm(G); G = dp_rest(G); |
| |
} |
| } |
} |
| return BF; |
return [D,M]; |
| |
} |
| |
|
| |
def weyl_nf_mod(B,G,PS,Mod) |
| |
{ |
| |
for ( D = 0; G; ) { |
| |
for ( U = 0, L = B; L != []; L = cdr(L) ) { |
| |
if ( dp_redble(G,R=PS[car(L)]) > 0 ) { |
| |
CR = dp_hc(G)/dp_hc(R); |
| |
U = G-dp_weyl_mul_mod(CR*dp_mod(dp_subd(G,R),Mod,[]),R,Mod); |
| |
if ( !U ) |
| |
return D; |
| |
break; |
| |
} |
| |
} |
| |
if ( U ) |
| |
G = U; |
| |
else { |
| |
D += dp_hm(G); G = dp_rest(G); |
| |
} |
| |
} |
| |
return D; |
| |
} |
| |
|
| |
def weyl_hen_ttob(T,NF,LHS,V,MOD) |
| |
{ |
| |
T0 = time()[0]; M = etom(weyl_leq_nf(T,NF,LHS,V)); TE = time()[0] - T0; |
| |
T0 = time()[0]; U = henleq(M,MOD); TH = time()[0] - T0; |
| |
if ( dp_gr_print() ) { |
| |
print("(etom="+rtostr(TE)+" hen="+rtostr(TH)+")"); |
| |
} |
| |
return U ? vtop(T,U,LHS) : 0; |
| |
} |
| |
|
| |
def weyl_leq_nf(TL,NF,LHS,V) |
| |
{ |
| |
TLen = length(NF); |
| |
T = newvect(TLen); M = newvect(TLen); |
| |
for ( I = 0; I < TLen; I++ ) { |
| |
T[I] = dp_ht(NF[I][1]); |
| |
M[I] = dp_hc(NF[I][1]); |
| |
} |
| |
Len = length(TL); INDEX = newvect(Len); COEF = newvect(Len); |
| |
for ( L = TL, J = 0; L != []; L = cdr(L), J++ ) { |
| |
D = dp_ptod(car(L),V); |
| |
for ( I = 0; I < TLen; I++ ) |
| |
if ( D == T[I] ) |
| |
break; |
| |
INDEX[J] = I; COEF[J] = strtov("u"+rtostr(J)); |
| |
} |
| |
if ( !LHS ) { |
| |
COEF[0] = 1; NM = 0; DN = 1; |
| |
} else { |
| |
NM = LHS[0]; DN = LHS[1]; |
| |
} |
| |
for ( J = 0, S = -NM; J < Len; J++ ) { |
| |
DNJ = M[INDEX[J]]; |
| |
GCD = igcd(DN,DNJ); CS = DNJ/GCD; CJ = DN/GCD; |
| |
S = CS*S + CJ*NF[INDEX[J]][0]*COEF[J]; |
| |
DN *= CS; |
| |
} |
| |
for ( D = S, E = []; D; D = dp_rest(D) ) |
| |
E = cons(dp_hc(D),E); |
| |
BOUND = LHS ? 0 : 1; |
| |
for ( I = Len - 1, W = []; I >= BOUND; I-- ) |
| |
W = cons(COEF[I],W); |
| |
return [E,W]; |
| |
} |
| |
|
| |
def weyl_nf_tab(A,NF,V) |
| |
{ |
| |
TLen = length(NF); |
| |
T = newvect(TLen); M = newvect(TLen); |
| |
for ( I = 0; I < TLen; I++ ) { |
| |
T[I] = dp_ht(NF[I][1]); |
| |
M[I] = dp_hc(NF[I][1]); |
| |
} |
| |
A = dp_ptod(A,V); |
| |
for ( Z = A, Len = 0; Z; Z = dp_rest(Z), Len++ ); |
| |
INDEX = newvect(Len); COEF = newvect(Len); |
| |
for ( Z = A, J = 0; Z; Z = dp_rest(Z), J++ ) { |
| |
D = dp_ht(Z); |
| |
for ( I = 0; I < TLen; I++ ) |
| |
if ( D == T[I] ) |
| |
break; |
| |
INDEX[J] = I; COEF[J] = dp_hc(Z); |
| |
} |
| |
for ( J = 0, S = 0, DN = 1; J < Len; J++ ) { |
| |
DNJ = M[INDEX[J]]; |
| |
GCD = igcd(DN,DNJ); CS = DNJ/GCD; CJ = DN/GCD; |
| |
S = CS*S + CJ*NF[INDEX[J]][0]*COEF[J]; |
| |
DN *= CS; |
| |
} |
| |
return [S,DN]; |
| } |
} |
| |
|
| def remove_zero(L) |
def remove_zero(L) |