version 1.1, 2000/06/05 04:59:34 |
version 1.16, 2001/01/18 00:52:32 |
|
|
/* $OpenXM$ */ |
/* |
|
* Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED |
|
* All rights reserved. |
|
* |
|
* FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, |
|
* non-exclusive and royalty-free license to use, copy, modify and |
|
* redistribute, solely for non-commercial and non-profit purposes, the |
|
* computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and |
|
* conditions of this Agreement. For the avoidance of doubt, you acquire |
|
* only a limited right to use the SOFTWARE hereunder, and FLL or any |
|
* third party developer retains all rights, including but not limited to |
|
* copyrights, in and to the SOFTWARE. |
|
* |
|
* (1) FLL does not grant you a license in any way for commercial |
|
* purposes. You may use the SOFTWARE only for non-commercial and |
|
* non-profit purposes only, such as academic, research and internal |
|
* business use. |
|
* (2) The SOFTWARE is protected by the Copyright Law of Japan and |
|
* international copyright treaties. If you make copies of the SOFTWARE, |
|
* with or without modification, as permitted hereunder, you shall affix |
|
* to all such copies of the SOFTWARE the above copyright notice. |
|
* (3) An explicit reference to this SOFTWARE and its copyright owner |
|
* shall be made on your publication or presentation in any form of the |
|
* results obtained by use of the SOFTWARE. |
|
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
|
* e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification |
|
* for such modification or the source code of the modified part of the |
|
* SOFTWARE. |
|
* |
|
* THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL |
|
* MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND |
|
* EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS |
|
* FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' |
|
* RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY |
|
* MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. |
|
* UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, |
|
* OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY |
|
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL |
|
* DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES |
|
* ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES |
|
* FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY |
|
* DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF |
|
* SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART |
|
* OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY |
|
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
|
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
|
* |
|
* $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.15 2001/01/11 08:43:23 noro Exp $ |
|
*/ |
/* requires 'primdec' */ |
/* requires 'primdec' */ |
|
|
/* annihilating ideal of F^s ? */ |
/* annihilating ideal of F^s */ |
|
|
def ann(F) |
def ann(F) |
{ |
{ |
V = vars(F); |
V = vars(F); |
W = append([y1,y2,t],V); |
|
N = length(V); |
N = length(V); |
B = [1-y1*y2,t-y1*F]; |
D = newvect(N); |
|
|
|
for ( I = 0; I < N; I++ ) |
|
D[I] = [deg(F,V[I]),V[I]]; |
|
qsort(D,compare_first); |
|
for ( V = [], I = N-1; I >= 0; I-- ) |
|
V = cons(D[I][1],V); |
|
|
for ( I = N-1, DV = []; I >= 0; I-- ) |
for ( I = N-1, DV = []; I >= 0; I-- ) |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
|
|
|
W = append([y1,y2,t],V); |
DW = append([dy1,dy2,dt],DV); |
DW = append([dy1,dy2,dt],DV); |
|
|
|
B = [1-y1*y2,t-y1*F]; |
for ( I = 0; I < N; I++ ) { |
for ( I = 0; I < N; I++ ) { |
B = cons(DV[I]+y1*diff(F,V[I])*dt,B); |
B = cons(DV[I]+y1*diff(F,V[I])*dt,B); |
} |
} |
ctrl("do_weyl",1); |
|
|
/* homogenized (heuristics) */ |
dp_nelim(2); |
dp_nelim(2); |
G0 = dp_gr_main(B,append(W,DW),0,0,6); |
G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); |
G1 = []; |
G1 = []; |
for ( T = G0; T != []; T = cdr(T) ) { |
for ( T = G0; T != []; T = cdr(T) ) { |
E = car(T); VL = vars(E); |
E = car(T); VL = vars(E); |
if ( !member(y1,VL) && !member(y2,VL) ) |
if ( !member(y1,VL) && !member(y2,VL) ) |
G1 = cons(E,G1); |
G1 = cons(E,G1); |
} |
} |
G2 = map(subst,G1,dt,1); |
G2 = map(psi,G1,t,dt); |
G3 = map(b_subst,G2,t); |
G3 = map(subst,G2,t,-1-s); |
G4 = map(subst,G3,t,-1-s); |
return G3; |
ctrl("do_weyl",0); |
|
return G4; |
|
} |
} |
|
|
/* b-function of F ? */ |
/* |
|
* compute J_f|s=r, where r = the minimal integral root of global b_f(s) |
|
* ann0(F) returns [MinRoot,Ideal] |
|
*/ |
|
|
def bfct(F) |
def ann0(F) |
{ |
{ |
G4 = ann(F); |
|
|
|
ctrl("do_weyl",1); |
|
V = vars(F); |
V = vars(F); |
N = length(V); |
N = length(V); |
|
D = newvect(N); |
|
|
|
for ( I = 0; I < N; I++ ) |
|
D[I] = [deg(F,V[I]),V[I]]; |
|
qsort(D,compare_first); |
|
for ( V = [], I = 0; I < N; I++ ) |
|
V = cons(D[I][1],V); |
|
|
for ( I = N-1, DV = []; I >= 0; I-- ) |
for ( I = N-1, DV = []; I >= 0; I-- ) |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
|
|
N1 = 2*(N+1); |
/* XXX : heuristics */ |
|
W = append([y1,y2,t],reverse(V)); |
|
DW = append([dy1,dy2,dt],reverse(DV)); |
|
WDW = append(W,DW); |
|
|
M = newmat(N1+1,N1); |
B = [1-y1*y2,t-y1*F]; |
for ( J = N+1; J < N1; J++ ) |
for ( I = 0; I < N; I++ ) { |
|
B = cons(DV[I]+y1*diff(F,V[I])*dt,B); |
|
} |
|
|
|
/* homogenized (heuristics) */ |
|
dp_nelim(2); |
|
G0 = dp_weyl_gr_main(B,WDW,1,0,6); |
|
G1 = []; |
|
for ( T = G0; T != []; T = cdr(T) ) { |
|
E = car(T); VL = vars(E); |
|
if ( !member(y1,VL) && !member(y2,VL) ) |
|
G1 = cons(E,G1); |
|
} |
|
G2 = map(psi,G1,t,dt); |
|
G3 = map(subst,G2,t,-1-s); |
|
|
|
/* G3 = J_f(s) */ |
|
|
|
V1 = cons(s,V); DV1 = cons(ds,DV); V1DV1 = append(V1,DV1); |
|
G4 = dp_weyl_gr_main(cons(F,G3),V1DV1,0,1,0); |
|
Bf = weyl_minipoly(G4,V1DV1,0,s); |
|
|
|
FList = cdr(fctr(Bf)); |
|
for ( T = FList, Min = 0; T != []; T = cdr(T) ) { |
|
LF = car(car(T)); |
|
Root = -coef(LF,0)/coef(LF,1); |
|
if ( dn(Root) == 1 && Root < Min ) |
|
Min = Root; |
|
} |
|
return [Min,map(subst,G3,s,Min)]; |
|
} |
|
|
|
def indicial1(F,V) |
|
{ |
|
W = append([y1,t],V); |
|
N = length(V); |
|
B = [t-y1*F]; |
|
for ( I = N-1, DV = []; I >= 0; I-- ) |
|
DV = cons(strtov("d"+rtostr(V[I])),DV); |
|
DW = append([dy1,dt],DV); |
|
for ( I = 0; I < N; I++ ) { |
|
B = cons(DV[I]+y1*diff(F,V[I])*dt,B); |
|
} |
|
dp_nelim(1); |
|
|
|
/* homogenized (heuristics) */ |
|
G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); |
|
G1 = map(subst,G0,y1,1); |
|
G2 = map(psi,G1,t,dt); |
|
G3 = map(subst,G2,t,-s-1); |
|
return G3; |
|
} |
|
|
|
def psi(F,T,DT) |
|
{ |
|
D = dp_ptod(F,[T,DT]); |
|
Wmax = weight(D); |
|
D1 = dp_rest(D); |
|
for ( ; D1; D1 = dp_rest(D1) ) |
|
if ( weight(D1) > Wmax ) |
|
Wmax = weight(D1); |
|
for ( D1 = D, Dmax = 0; D1; D1 = dp_rest(D1) ) |
|
if ( weight(D1) == Wmax ) |
|
Dmax += dp_hm(D1); |
|
if ( Wmax >= 0 ) |
|
Dmax = dp_weyl_mul(<<Wmax,0>>,Dmax); |
|
else |
|
Dmax = dp_weyl_mul(<<0,-Wmax>>,Dmax); |
|
Rmax = dp_dtop(Dmax,[T,DT]); |
|
R = b_subst(subst(Rmax,DT,1),T); |
|
return R; |
|
} |
|
|
|
def weight(D) |
|
{ |
|
V = dp_etov(D); |
|
return V[1]-V[0]; |
|
} |
|
|
|
def compare_first(A,B) |
|
{ |
|
A0 = car(A); |
|
B0 = car(B); |
|
if ( A0 > B0 ) |
|
return 1; |
|
else if ( A0 < B0 ) |
|
return -1; |
|
else |
|
return 0; |
|
} |
|
|
|
/* generic b-function w.r.t. weight vector W */ |
|
|
|
def generic_bfct(F,V,DV,W) |
|
{ |
|
N = length(V); |
|
N2 = N*2; |
|
|
|
/* If W is a list, convert it to a vector */ |
|
if ( type(W) == 4 ) |
|
W = newvect(length(W),W); |
|
dp_weyl_set_weight(W); |
|
|
|
/* create a term order M in D<x,d> (DRL) */ |
|
M = newmat(N2,N2); |
|
for ( J = 0; J < N2; J++ ) |
M[0][J] = 1; |
M[0][J] = 1; |
for ( J = 0; J < N+1; J++ ) |
for ( I = 1; I < N2; I++ ) |
M[1][J] = 1; |
M[I][N2-I] = -1; |
#if 0 |
|
for ( I = 0; I < N+1; I++ ) |
VDV = append(V,DV); |
M[I+2][N-I] = -1; |
|
|
/* create a non-term order MW in D<x,d> */ |
|
MW = newmat(N2+1,N2); |
|
for ( J = 0; J < N; J++ ) |
|
MW[0][J] = -W[J]; |
|
for ( ; J < N2; J++ ) |
|
MW[0][J] = W[J-N]; |
|
for ( I = 1; I <= N2; I++ ) |
|
for ( J = 0; J < N2; J++ ) |
|
MW[I][J] = M[I-1][J]; |
|
|
|
/* create a homogenized term order MWH in D<x,d,h> */ |
|
MWH = newmat(N2+2,N2+1); |
|
for ( J = 0; J <= N2; J++ ) |
|
MWH[0][J] = 1; |
|
for ( I = 1; I <= N2+1; I++ ) |
|
for ( J = 0; J < N2; J++ ) |
|
MWH[I][J] = MW[I-1][J]; |
|
|
|
/* homogenize F */ |
|
VDVH = append(VDV,[h]); |
|
FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH); |
|
|
|
/* compute a groebner basis of FH w.r.t. MWH */ |
|
dp_gr_flags(["Top",1,"NoRA",1]); |
|
GH = dp_weyl_gr_main(FH,VDVH,0,1,11); |
|
dp_gr_flags(["Top",0,"NoRA",0]); |
|
|
|
/* dehomigenize GH */ |
|
G = map(subst,GH,h,1); |
|
|
|
/* G is a groebner basis w.r.t. a non term order MW */ |
|
/* take the initial part w.r.t. (-W,W) */ |
|
GIN = map(initial_part,G,VDV,MW,W); |
|
|
|
/* GIN is a groebner basis w.r.t. a term order M */ |
|
/* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */ |
|
|
|
/* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */ |
|
for ( I = 0, T = 0; I < N; I++ ) |
|
T += W[I]*V[I]*DV[I]; |
|
B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */ |
|
return B; |
|
} |
|
|
|
def initial_part(F,V,MW,W) |
|
{ |
|
N2 = length(V); |
|
N = N2/2; |
|
dp_ord(MW); |
|
DF = dp_ptod(F,V); |
|
R = dp_hm(DF); |
|
DF = dp_rest(DF); |
|
|
|
E = dp_etov(R); |
|
for ( I = 0, TW = 0; I < N; I++ ) |
|
TW += W[I]*(-E[I]+E[N+I]); |
|
RW = TW; |
|
|
|
for ( ; DF; DF = dp_rest(DF) ) { |
|
E = dp_etov(DF); |
|
for ( I = 0, TW = 0; I < N; I++ ) |
|
TW += W[I]*(-E[I]+E[N+I]); |
|
if ( TW == RW ) |
|
R += dp_hm(DF); |
|
else if ( TW < RW ) |
|
break; |
|
else |
|
error("initial_part : cannot happen"); |
|
} |
|
return dp_dtop(R,V); |
|
|
|
} |
|
|
|
/* b-function of F ? */ |
|
|
|
def bfct(F) |
|
{ |
|
V = vars(F); |
|
N = length(V); |
|
D = newvect(N); |
|
|
for ( I = 0; I < N; I++ ) |
for ( I = 0; I < N; I++ ) |
M[I+2+N+1][N1-1-I] = -1; |
D[I] = [deg(F,V[I]),V[I]]; |
#elif 1 |
qsort(D,compare_first); |
for ( I = 0; I < N1-1; I++ ) |
for ( V = [], I = 0; I < N; I++ ) |
M[I+2][N1-I-1] = 1; |
V = cons(D[I][1],V); |
#else |
for ( I = N-1, DV = []; I >= 0; I-- ) |
for ( I = 0; I < N1-1; I++ ) |
DV = cons(strtov("d"+rtostr(V[I])),DV); |
M[I+2][I] = 1; |
|
#endif |
|
V1 = cons(s,V); DV1 = cons(ds,DV); |
V1 = cons(s,V); DV1 = cons(ds,DV); |
G5 = dp_gr_main(cons(F,G4),append(V1,DV1),0,0,M); |
|
for ( T = G5, G6 = []; T != []; T = cdr(T) ) { |
G0 = indicial1(F,reverse(V)); |
E = car(T); |
G1 = dp_weyl_gr_main(G0,append(V1,DV1),0,1,0); |
if ( intersection(vars(E),DV1) == [] ) |
Minipoly = weyl_minipoly(G1,append(V1,DV1),0,s); |
G6 = cons(E,G6); |
return Minipoly; |
|
} |
|
|
|
/* b-function computation via generic_bfct() (experimental) */ |
|
|
|
def bfct_via_gbfct(F) |
|
{ |
|
V = vars(F); |
|
N = length(V); |
|
D = newvect(N); |
|
|
|
for ( I = 0; I < N; I++ ) |
|
D[I] = [deg(F,V[I]),V[I]]; |
|
qsort(D,compare_first); |
|
for ( V = [], I = 0; I < N; I++ ) |
|
V = cons(D[I][1],V); |
|
V = reverse(V); |
|
for ( I = N-1, DV = []; I >= 0; I-- ) |
|
DV = cons(strtov("d"+rtostr(V[I])),DV); |
|
|
|
B = [t-F]; |
|
for ( I = 0; I < N; I++ ) { |
|
B = cons(DV[I]+diff(F,V[I])*dt,B); |
} |
} |
ctrl("do_weyl",0); |
V1 = cons(t,V); DV1 = cons(dt,DV); |
G6_0 = remove_zero(map(z_subst,G6,V)); |
W = newvect(N+1); |
F0 = flatmf(cdr(fctr(dp_gr_main(G6_0,[s],0,0,0)[0]))); |
W[0] = 1; |
for ( T = F0, BF = []; T != []; T = cdr(T) ) { |
R = generic_bfct(B,V1,DV1,W); |
FI = car(T); |
|
for ( J = 1; ; J++ ) { |
return subst(R,s,-s-1); |
S = map(srem,map(z_subst,idealquo(G6,[FI^J],V1,0),V),FI); |
} |
for ( ; S != [] && !car(S); S = cdr(S) ); |
|
if ( S != [] ) |
def weyl_minipolym(G,V,O,M,V0) |
|
{ |
|
N = length(V); |
|
Len = length(G); |
|
dp_ord(O); |
|
setmod(M); |
|
PS = newvect(Len); |
|
PS0 = newvect(Len); |
|
|
|
for ( I = 0, T = G; T != []; T = cdr(T), I++ ) |
|
PS0[I] = dp_ptod(car(T),V); |
|
for ( I = 0, T = G; T != []; T = cdr(T), I++ ) |
|
PS[I] = dp_mod(dp_ptod(car(T),V),M,[]); |
|
|
|
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
|
GI = cons(I,GI); |
|
|
|
U = dp_mod(dp_ptod(V0,V),M,[]); |
|
|
|
T = dp_mod(<<0>>,M,[]); |
|
TT = dp_mod(dp_ptod(1,V),M,[]); |
|
G = H = [[TT,T]]; |
|
|
|
for ( I = 1; ; I++ ) { |
|
if ( dp_gr_print() ) |
|
print(".",2); |
|
T = dp_mod(<<I>>,M,[]); |
|
|
|
TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M); |
|
H = cons([TT,T],H); |
|
L = dp_lnf_mod([TT,T],G,M); |
|
if ( !L[0] ) { |
|
if ( dp_gr_print() ) |
|
print(""); |
|
return dp_dtop(L[1],[t]); /* XXX */ |
|
} else |
|
G = insert(G,L); |
|
} |
|
} |
|
|
|
def weyl_minipoly(G0,V0,O0,P) |
|
{ |
|
HM = hmlist(G0,V0,O0); |
|
|
|
N = length(V0); |
|
Len = length(G0); |
|
dp_ord(O0); |
|
PS = newvect(Len); |
|
for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ ) |
|
PS[I] = dp_ptod(car(T),V0); |
|
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
|
GI = cons(I,GI); |
|
DP = dp_ptod(P,V0); |
|
|
|
for ( I = 0; ; I++ ) { |
|
Prime = lprime(I); |
|
if ( !valid_modulus(HM,Prime) ) |
|
continue; |
|
MP = weyl_minipolym(G0,V0,O0,Prime,P); |
|
D = deg(MP,var(MP)); |
|
|
|
NFP = weyl_nf(GI,DP,1,PS); |
|
NF = [[dp_ptod(1,V0),1]]; |
|
LCM = 1; |
|
|
|
for ( J = 1; J <= D; J++ ) { |
|
if ( dp_gr_print() ) |
|
print(".",2); |
|
NFPrev = car(NF); |
|
NFJ = weyl_nf(GI, |
|
dp_weyl_mul(NFP[0],NFPrev[0]),NFP[1]*NFPrev[1],PS); |
|
NFJ = remove_cont(NFJ); |
|
NF = cons(NFJ,NF); |
|
LCM = ilcm(LCM,NFJ[1]); |
|
} |
|
if ( dp_gr_print() ) |
|
print(""); |
|
U = NF[0][0]*idiv(LCM,NF[0][1]); |
|
Coef = []; |
|
for ( J = D-1; J >= 0; J-- ) { |
|
Coef = cons(strtov("u"+rtostr(J)),Coef); |
|
U += car(Coef)*NF[D-J][0]*idiv(LCM,NF[D-J][1]); |
|
} |
|
|
|
for ( UU = U, Eq = []; UU; UU = dp_rest(UU) ) |
|
Eq = cons(dp_hc(UU),Eq); |
|
M = etom([Eq,Coef]); |
|
B = henleq(M,Prime); |
|
if ( dp_gr_print() ) |
|
print(""); |
|
if ( B ) { |
|
R = 0; |
|
for ( I = 0; I < D; I++ ) |
|
R += B[0][I]*s^I; |
|
R += B[1]*s^D; |
|
return R; |
|
} |
|
} |
|
} |
|
|
|
def weyl_nf(B,G,M,PS) |
|
{ |
|
for ( D = 0; G; ) { |
|
for ( U = 0, L = B; L != []; L = cdr(L) ) { |
|
if ( dp_redble(G,R=PS[car(L)]) > 0 ) { |
|
GCD = igcd(dp_hc(G),dp_hc(R)); |
|
CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD); |
|
U = CG*G-dp_weyl_mul(CR*dp_subd(G,R),R); |
|
if ( !U ) |
|
return [D,M]; |
|
D *= CG; M *= CG; |
break; |
break; |
|
} |
} |
} |
BF = cons([FI,J],BF); |
if ( U ) |
|
G = U; |
|
else { |
|
D += dp_hm(G); G = dp_rest(G); |
|
} |
} |
} |
return BF; |
return [D,M]; |
|
} |
|
|
|
def weyl_nf_mod(B,G,PS,Mod) |
|
{ |
|
for ( D = 0; G; ) { |
|
for ( U = 0, L = B; L != []; L = cdr(L) ) { |
|
if ( dp_redble(G,R=PS[car(L)]) > 0 ) { |
|
CR = dp_hc(G)/dp_hc(R); |
|
U = G-dp_weyl_mul_mod(CR*dp_mod(dp_subd(G,R),Mod,[]),R,Mod); |
|
if ( !U ) |
|
return D; |
|
break; |
|
} |
|
} |
|
if ( U ) |
|
G = U; |
|
else { |
|
D += dp_hm(G); G = dp_rest(G); |
|
} |
|
} |
|
return D; |
} |
} |
|
|
def remove_zero(L) |
def remove_zero(L) |