version 1.2, 2000/02/08 04:47:10 |
version 1.16, 2001/06/25 01:35:22 |
|
|
/* $OpenXM: OpenXM_contrib2/asir2000/include/ca.h,v 1.1.1.1 1999/12/03 07:39:11 noro Exp $ */ |
/* |
|
* Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED |
|
* All rights reserved. |
|
* |
|
* FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, |
|
* non-exclusive and royalty-free license to use, copy, modify and |
|
* redistribute, solely for non-commercial and non-profit purposes, the |
|
* computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and |
|
* conditions of this Agreement. For the avoidance of doubt, you acquire |
|
* only a limited right to use the SOFTWARE hereunder, and FLL or any |
|
* third party developer retains all rights, including but not limited to |
|
* copyrights, in and to the SOFTWARE. |
|
* |
|
* (1) FLL does not grant you a license in any way for commercial |
|
* purposes. You may use the SOFTWARE only for non-commercial and |
|
* non-profit purposes only, such as academic, research and internal |
|
* business use. |
|
* (2) The SOFTWARE is protected by the Copyright Law of Japan and |
|
* international copyright treaties. If you make copies of the SOFTWARE, |
|
* with or without modification, as permitted hereunder, you shall affix |
|
* to all such copies of the SOFTWARE the above copyright notice. |
|
* (3) An explicit reference to this SOFTWARE and its copyright owner |
|
* shall be made on your publication or presentation in any form of the |
|
* results obtained by use of the SOFTWARE. |
|
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
|
* e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification |
|
* for such modification or the source code of the modified part of the |
|
* SOFTWARE. |
|
* |
|
* THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL |
|
* MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND |
|
* EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS |
|
* FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' |
|
* RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY |
|
* MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. |
|
* UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, |
|
* OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY |
|
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL |
|
* DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES |
|
* ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES |
|
* FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY |
|
* DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF |
|
* SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART |
|
* OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY |
|
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
|
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
|
* |
|
* $OpenXM: OpenXM_contrib2/asir2000/include/ca.h,v 1.15 2001/06/20 09:30:34 noro Exp $ |
|
*/ |
#include <stdio.h> |
#include <stdio.h> |
|
|
#if defined(hpux) |
#if defined(hpux) |
|
|
#include <stdlib.h> |
#include <stdlib.h> |
#endif |
#endif |
|
|
#if defined(__MWERKS__) |
|
#define THINK_C |
|
#endif |
|
|
|
#if defined(linux) || (defined(sun) && !defined(SYSV)) || defined(news5000) || (defined(mips) && defined(ultrix)) |
#if defined(linux) || (defined(sun) && !defined(SYSV)) || defined(news5000) || (defined(mips) && defined(ultrix)) |
#include <alloca.h> |
#include <alloca.h> |
#endif |
#endif |
Line 63 typedef void * pointer; |
|
Line 107 typedef void * pointer; |
|
#define O_MATHCAP 13 |
#define O_MATHCAP 13 |
#define O_F 14 |
#define O_F 14 |
#define O_GFMMAT 15 |
#define O_GFMMAT 15 |
|
#define O_BYTEARRAY 16 |
|
#define O_QUOTE 17 |
#define O_VOID -1 |
#define O_VOID -1 |
|
|
#define N_Q 0 |
#define N_Q 0 |
Line 74 typedef void * pointer; |
|
Line 120 typedef void * pointer; |
|
#define N_LM 6 |
#define N_LM 6 |
#define N_GF2N 7 |
#define N_GF2N 7 |
#define N_GFPN 8 |
#define N_GFPN 8 |
|
#define N_GFS 9 |
|
|
#define ORD_REVGRADLEX 0 |
#define ORD_REVGRADLEX 0 |
#define ORD_GRADLEX 1 |
#define ORD_GRADLEX 1 |
Line 192 typedef struct oMQ { |
|
Line 239 typedef struct oMQ { |
|
int cont; |
int cont; |
} *MQ; |
} *MQ; |
|
|
|
typedef struct oGFS { |
|
short id; |
|
char nid; |
|
char pad; |
|
int cont; |
|
} *GFS; |
|
|
|
|
typedef struct oP { |
typedef struct oP { |
short id; |
short id; |
short pad; |
short pad; |
Line 270 typedef struct oMATHCAP { |
|
Line 325 typedef struct oMATHCAP { |
|
struct oLIST *body; |
struct oLIST *body; |
} *MATHCAP; |
} *MATHCAP; |
|
|
|
typedef struct oBYTEARRAY { |
|
short id; |
|
short pad; |
|
int len; |
|
unsigned char *body; |
|
} *BYTEARRAY; |
|
|
|
typedef struct oQUOTE { |
|
short id; |
|
short pad; |
|
pointer body; |
|
} *QUOTE; |
|
|
typedef struct oObj { |
typedef struct oObj { |
short id; |
short id; |
short pad; |
short pad; |
Line 302 typedef struct oNODE { |
|
Line 370 typedef struct oNODE { |
|
struct oNODE *next; |
struct oNODE *next; |
} *NODE; |
} *NODE; |
|
|
|
/* univariate poly over small finite field; dense */ |
typedef struct oUM { |
typedef struct oUM { |
int d; |
int d; |
int c[1]; |
int c[1]; |
} *UM; |
} *UM; |
|
|
|
/* univariate poly with padic coeff */ |
typedef struct oLUM { |
typedef struct oLUM { |
int d; |
int d; |
int *c[1]; |
int *c[1]; |
} *LUM; |
} *LUM; |
|
|
|
/* bivariate poly over small finite field; dense */ |
|
|
|
typedef struct oBM { |
|
int d; |
|
UM c[1]; |
|
} *BM; |
|
|
typedef struct oML { |
typedef struct oML { |
int n; |
int n; |
int mod; |
int mod; |
|
|
#define FF_GFP 1 |
#define FF_GFP 1 |
#define FF_GF2N 2 |
#define FF_GF2N 2 |
#define FF_GFPN 3 |
#define FF_GFPN 3 |
|
#define FF_GFS 4 |
|
|
|
/* include interval.h */ |
|
#include "interval.h" |
|
|
#define INDEX 100 |
#define INDEX 100 |
|
|
#if USE_FLOAT |
#if USE_FLOAT |
Line 457 bzero((char *)(p),(int)(((n)+1)*sizeof(type)))) |
|
Line 538 bzero((char *)(p),(int)(((n)+1)*sizeof(type)))) |
|
(p) = ___q___;\ |
(p) = ___q___;\ |
} |
} |
|
|
|
#define W_BMALLOC(n,bound,p)\ |
|
{\ |
|
BM ___q___;\ |
|
int ___i___;\ |
|
UM *___c___;\ |
|
(___q___) = (BM)ALLOCA(TRUESIZE(oBM,(n),UM));\ |
|
DEG(___q___) = n;\ |
|
___c___ = (UM *)COEF(___q___);\ |
|
for ( ___i___ = 0; ___i___ <= n; ___i___++ ) {\ |
|
___c___[___i___] = W_UMALLOC(bound);\ |
|
DEG(___c___[___i___]) = -1\ |
|
bzero((char *)COEF(___c___[___i___]),((bound)+1)*sizeof(int));\ |
|
}\ |
|
(p) = ___q___;\ |
|
} |
|
|
#define NEWUP2(q,w)\ |
#define NEWUP2(q,w)\ |
((q)=(UP2)MALLOC_ATOMIC(TRUESIZE(oUP2,(w)-1,unsigned int)),\ |
((q)=(UP2)MALLOC_ATOMIC(TRUESIZE(oUP2,(w)-1,unsigned int)),\ |
bzero((char *)(q)->b,(w)*sizeof(unsigned int))) |
bzero((char *)(q)->b,(w)*sizeof(unsigned int))) |
Line 469 bzero((char *)(q)->b,(w)*sizeof(unsigned int))) |
|
Line 566 bzero((char *)(q)->b,(w)*sizeof(unsigned int))) |
|
/* cell allocators */ |
/* cell allocators */ |
#define NEWQ(q) ((q)=(Q)MALLOC(sizeof(struct oQ)),OID(q)=O_N,NID(q)=N_Q) |
#define NEWQ(q) ((q)=(Q)MALLOC(sizeof(struct oQ)),OID(q)=O_N,NID(q)=N_Q) |
#define NEWMQ(q) ((q)=(MQ)MALLOC_ATOMIC(sizeof(struct oMQ)),OID(q)=O_N,NID(q)=N_M) |
#define NEWMQ(q) ((q)=(MQ)MALLOC_ATOMIC(sizeof(struct oMQ)),OID(q)=O_N,NID(q)=N_M) |
|
#define NEWGFS(q) ((q)=(GFS)MALLOC_ATOMIC(sizeof(struct oGFS)),OID(q)=O_N,NID(q)=N_GFS) |
#define NEWP(p) ((p)=(P)MALLOC(sizeof(struct oP)),OID(p)=O_P) |
#define NEWP(p) ((p)=(P)MALLOC(sizeof(struct oP)),OID(p)=O_P) |
#define NEWR(r) ((r)=(R)MALLOC(sizeof(struct oR)),OID(r)=O_R,(r)->reduced=0) |
#define NEWR(r) ((r)=(R)MALLOC(sizeof(struct oR)),OID(r)=O_R,(r)->reduced=0) |
#define NEWLIST(l) ((l)=(LIST)MALLOC(sizeof(struct oLIST)),OID(l)=O_LIST) |
#define NEWLIST(l) ((l)=(LIST)MALLOC(sizeof(struct oLIST)),OID(l)=O_LIST) |
Line 479 bzero((char *)(q)->b,(w)*sizeof(unsigned int))) |
|
Line 577 bzero((char *)(q)->b,(w)*sizeof(unsigned int))) |
|
#define NEWUSINT(u) ((u)=(USINT)MALLOC_ATOMIC(sizeof(struct oUSINT)),OID(u)=O_USINT) |
#define NEWUSINT(u) ((u)=(USINT)MALLOC_ATOMIC(sizeof(struct oUSINT)),OID(u)=O_USINT) |
#define NEWERR(e) ((e)=(ERR)MALLOC(sizeof(struct oERR)),OID(e)=O_ERR) |
#define NEWERR(e) ((e)=(ERR)MALLOC(sizeof(struct oERR)),OID(e)=O_ERR) |
#define NEWMATHCAP(e) ((e)=(MATHCAP)MALLOC(sizeof(struct oMATHCAP)),OID(e)=O_MATHCAP) |
#define NEWMATHCAP(e) ((e)=(MATHCAP)MALLOC(sizeof(struct oMATHCAP)),OID(e)=O_MATHCAP) |
|
#define NEWBYTEARRAY(e) ((e)=(BYTEARRAY)MALLOC(sizeof(struct oBYTEARRAY)),OID(e)=O_BYTEARRAY) |
|
#define NEWQUOTE(e) ((e)=(QUOTE)MALLOC(sizeof(struct oQUOTE)),OID(e)=O_QUOTE) |
|
|
#define NEWNODE(a) ((a)=(NODE)MALLOC(sizeof(struct oNODE))) |
#define NEWNODE(a) ((a)=(NODE)MALLOC(sizeof(struct oNODE))) |
#define NEWDC(dc) ((dc)=(DCP)MALLOC(sizeof(struct oDCP))) |
#define NEWDC(dc) ((dc)=(DCP)MALLOC(sizeof(struct oDCP))) |
Line 498 bzero((char *)(q)->b,(w)*sizeof(unsigned int))) |
|
Line 598 bzero((char *)(q)->b,(w)*sizeof(unsigned int))) |
|
#define NEWGFPN(r) ((r)=(GFPN)MALLOC(sizeof(struct oGFPN)),OID(r)=O_N,NID(r)=N_GFPN) |
#define NEWGFPN(r) ((r)=(GFPN)MALLOC(sizeof(struct oGFPN)),OID(r)=O_N,NID(r)=N_GFPN) |
#define NEWDL(d,n) \ |
#define NEWDL(d,n) \ |
((d)=(DL)MALLOC_ATOMIC(TRUESIZE(oDL,(n)-1,int)),bzero((char *)(d),TRUESIZE(oDL,(n)-1,int))) |
((d)=(DL)MALLOC_ATOMIC(TRUESIZE(oDL,(n)-1,int)),bzero((char *)(d),TRUESIZE(oDL,(n)-1,int))) |
|
#define NEWDL_NOINIT(d,n) \ |
|
((d)=(DL)MALLOC_ATOMIC(TRUESIZE(oDL,(n)-1,int))) |
|
|
#define MKP(v,dc,p) \ |
#define MKP(v,dc,p) \ |
(!DEG(dc)?((p)=COEF(dc)):(NEWP(p),VR(p)=(v),DC(p)=(dc),(p))) |
(!DEG(dc)?((p)=COEF(dc)):(NEWP(p),VR(p)=(v),DC(p)=(dc),(p))) |
Line 526 DEG(DC(p))=ONE,COEF(DC(p))=(P)ONEM,NEXT(DC(p))=0) |
|
Line 628 DEG(DC(p))=ONE,COEF(DC(p))=(P)ONEM,NEXT(DC(p))=0) |
|
#define MKUSINT(u,b) (NEWUSINT(u),(u)->body=(unsigned)(b)) |
#define MKUSINT(u,b) (NEWUSINT(u),(u)->body=(unsigned)(b)) |
#define MKERR(e,b) (NEWERR(e),(e)->body=(Obj)(b)) |
#define MKERR(e,b) (NEWERR(e),(e)->body=(Obj)(b)) |
#define MKMATHCAP(e,b) (NEWMATHCAP(e),(e)->body=(LIST)(b)) |
#define MKMATHCAP(e,b) (NEWMATHCAP(e),(e)->body=(LIST)(b)) |
|
#define MKBYTEARRAY(m,l) \ |
|
(NEWBYTEARRAY(m),(m)->len=(l),(m)->body=(char *)MALLOC_ATOMIC((l)),bzero((m)->body,(l))) |
|
#define MKQUOTE(q,b) (NEWQUOTE(q),(q)->body=(pointer)(b)) |
|
|
#define NEXTDC(r,c) \ |
#define NEXTDC(r,c) \ |
if(!(r)){NEWDC(r);(c)=(r);}else{NEWDC(NEXT(c));(c)=NEXT(c);} |
if(!(r)){NEWDC(r);(c)=(r);}else{NEWDC(NEXT(c));(c)=NEXT(c);} |
Line 533 if(!(r)){NEWDC(r);(c)=(r);}else{NEWDC(NEXT(c));(c)=NEX |
|
Line 638 if(!(r)){NEWDC(r);(c)=(r);}else{NEWDC(NEXT(c));(c)=NEX |
|
if(!(r)){NEWNODE(r);(c)=(r);}else{NEWNODE(NEXT(c));(c)=NEXT(c);} |
if(!(r)){NEWNODE(r);(c)=(r);}else{NEWNODE(NEXT(c));(c)=NEXT(c);} |
#define NEXTMP(r,c) \ |
#define NEXTMP(r,c) \ |
if(!(r)){NEWMP(r);(c)=(r);}else{NEWMP(NEXT(c));(c)=NEXT(c);} |
if(!(r)){NEWMP(r);(c)=(r);}else{NEWMP(NEXT(c));(c)=NEXT(c);} |
|
#define NEXTMP2(r,c,s) \ |
|
if(!(r)){(c)=(r)=(s);}else{NEXT(c)=(s);(c)=(s);} |
|
|
/* convertors */ |
/* convertors */ |
#define NTOQ(n,s,q) \ |
#define NTOQ(n,s,q) \ |
Line 547 SGN(q)=((n)>0?1:-1),NM(q)=NALLOC(1),\ |
|
Line 654 SGN(q)=((n)>0?1:-1),NM(q)=NALLOC(1),\ |
|
PL(NM(q))=1,BD(NM(q))[0]=ABS(n),DN(q)=0,(q))) |
PL(NM(q))=1,BD(NM(q))[0]=ABS(n),DN(q)=0,(q))) |
#define UTOMQ(a,b) \ |
#define UTOMQ(a,b) \ |
((a)?(NEWMQ(b),CONT(b)=(unsigned int)(a),(b)):((b)=0)) |
((a)?(NEWMQ(b),CONT(b)=(unsigned int)(a),(b)):((b)=0)) |
|
#define MKGFS(a,b) \ |
|
((NEWGFS(b),CONT(b)=(a),(b))) |
#define STOMQ(a,b) \ |
#define STOMQ(a,b) \ |
((a)?(NEWMQ(b),CONT(b)=(a),(b)):((b)=0)) |
((a)?(NEWMQ(b),CONT(b)=(a),(b)):((b)=0)) |
#define UTON(u,n) \ |
#define UTON(u,n) \ |
Line 565 PL(NM(q))=1,BD(NM(q))[0]=(unsigned int)(n),DN(q)=0,(q) |
|
Line 674 PL(NM(q))=1,BD(NM(q))[0]=(unsigned int)(n),DN(q)=0,(q) |
|
#define MKAlg(b,r) \ |
#define MKAlg(b,r) \ |
(!(b)?((r)=0):NUM(b)?((r)=(Alg)(b)):(NEWAlg(r),BDY(r)=(Obj)(b),(r))) |
(!(b)?((r)=0):NUM(b)?((r)=(Alg)(b)):(NEWAlg(r),BDY(r)=(Obj)(b),(r))) |
|
|
#define ToReal(a) (!(a)?(double)0.0:REAL(a)?BDY((Real)a):RATN(a)?RatnToReal((Q)a):0) |
#if PARI |
|
#define ToReal(a) (!(a)?(double)0.0:REAL(a)?BDY((Real)a):RATN(a)?RatnToReal((Q)a):BIGFLOAT(a)?rtodbl(BDY((BF)a)):0) |
|
#else |
|
#define ToReal(a) (!(a)?(double)0.0:REAL(a)?BDY((Real)a):RATN(a)?RatnToReal((Q)a):0.0) |
|
#endif |
|
|
/* predicates */ |
/* predicates */ |
#define NUM(p) (OID(p)==O_N) |
#define NUM(p) (OID(p)==O_N) |
Line 573 PL(NM(q))=1,BD(NM(q))[0]=(unsigned int)(n),DN(q)=0,(q) |
|
Line 686 PL(NM(q))=1,BD(NM(q))[0]=(unsigned int)(n),DN(q)=0,(q) |
|
#define INT(q) (!DN((Q)q)) |
#define INT(q) (!DN((Q)q)) |
#define RATN(a) (NID(a)==N_Q) |
#define RATN(a) (NID(a)==N_Q) |
#define REAL(a) (NID(a)==N_R) |
#define REAL(a) (NID(a)==N_R) |
|
#define BIGFLOAT(a) (NID(a)==N_B) |
#define SFF(a) (NID(a)==N_M) |
#define SFF(a) (NID(a)==N_M) |
#define UNIQ(q) ((q)&&NUM(q)&&RATN(q)&&(SGN((Q)q)==1)&&UNIN(NM((Q)q))&&(!DN((Q)q))) |
#define UNIQ(q) ((q)&&NUM(q)&&RATN(q)&&(SGN((Q)q)==1)&&UNIN(NM((Q)q))&&(!DN((Q)q))) |
#define UNIMQ(q) ((q)&&NUM(q)&&SFF(q)&&(CONT((MQ)q)==1)) |
#define UNIMQ(q) ((q)&&NUM(q)&&SFF(q)&&(CONT((MQ)q)==1)) |
Line 581 PL(NM(q))=1,BD(NM(q))[0]=(unsigned int)(n),DN(q)=0,(q) |
|
Line 695 PL(NM(q))=1,BD(NM(q))[0]=(unsigned int)(n),DN(q)=0,(q) |
|
#define UNIN(n) ((n)&&(PL(n)==1)&&(BD(n)[0]==1)) |
#define UNIN(n) ((n)&&(PL(n)==1)&&(BD(n)[0]==1)) |
#define EVENN(n) ((!(n))||(!(BD(n)[0]%2))) |
#define EVENN(n) ((!(n))||(!(BD(n)[0]%2))) |
|
|
|
/* special macros for private memory management */ |
|
|
|
#define NV(p) ((p)->nv) |
|
#define C(p) ((p)->c) |
|
#define ITOS(p) (((unsigned int)(p))&0x7fffffff) |
|
#define STOI(i) ((P)((unsigned int)(i)|0x80000000)) |
|
|
|
/* immediate GFS representation */ |
|
|
|
#define IFTOF(p) ((int)(((unsigned int)(p))&0x7fffffff)) |
|
#define FTOIF(i) ((int)(((unsigned int)(i)|0x80000000))) |
|
|
|
struct cdl { |
|
P c; |
|
DL d; |
|
}; |
|
|
|
struct cdlm { |
|
int c; |
|
DL d; |
|
}; |
|
|
|
extern MP _mp_free_list; |
|
extern DP _dp_free_list; |
|
extern DL _dl_free_list; |
|
extern int current_dl_length; |
|
|
|
#define _NEWDL_NOINIT(d,n) if ((n)!= current_dl_length){_dl_free_list=0; current_dl_length=(n);} if(!_dl_free_list)_DL_alloc(); (d)=_dl_free_list; _dl_free_list = *((DL *)_dl_free_list) |
|
#define _NEWDL(d,n) if ((n)!= current_dl_length){_dl_free_list=0; current_dl_length=(n);} if(!_dl_free_list)_DL_alloc(); (d)=_dl_free_list; _dl_free_list = *((DL *)_dl_free_list); bzero((d),(((n)+1)*sizeof(int))) |
|
#define _NEWMP(m) if(!_mp_free_list)_MP_alloc(); (m)=_mp_free_list; _mp_free_list = NEXT(_mp_free_list) |
|
#define _MKDP(n,m,d) if(!_dp_free_list)_DP_alloc(); (d)=_dp_free_list; _dp_free_list = (DP)BDY(_dp_free_list); (d)->id = O_DP; (d)->nv=(n); BDY(d)=(m) |
|
|
|
#define _NEXTMP(r,c) \ |
|
if(!(r)){_NEWMP(r);(c)=(r);}else{_NEWMP(NEXT(c));(c)=NEXT(c);} |
|
|
|
#define _NEXTMP2(r,c,s) \ |
|
if(!(r)){(c)=(r)=(s);}else{NEXT(c)=(s);(c)=(s);} |
|
|
|
#define _FREEDL(m) *((DL *)m)=_dl_free_list; _dl_free_list=(m) |
|
#define _FREEMP(m) NEXT(m)=_mp_free_list; _mp_free_list=(m) |
|
#define _FREEDP(m) BDY(m)=(MP)_dp_free_list; _dp_free_list=(m) |
|
|
/* externals */ |
/* externals */ |
#if 0 |
#if 0 |
double NatToReal(); |
double NatToReal(); |
|
|
extern UP2 ONEUP2; |
extern UP2 ONEUP2; |
|
|
extern FILE *asir_out; |
extern FILE *asir_out; |
#if defined(__GNUC__) || defined(THINK_C) |
#if defined(__GNUC__) |
extern const int sprime[]; |
extern const int sprime[]; |
extern const int lprime[]; |
|
#else |
#else |
extern int sprime[]; |
extern int sprime[]; |
extern int lprime[]; |
|
#endif |
#endif |
|
|
|
extern int lprime_size; |
|
extern int *lprime; |
|
|
extern void (*addnumt[])(); |
extern void (*addnumt[])(); |
extern void (*subnumt[])(); |
extern void (*subnumt[])(); |
extern void (*mulnumt[])(); |
extern void (*mulnumt[])(); |
Line 625 extern void (*chsgnnumt[])(); |
|
Line 781 extern void (*chsgnnumt[])(); |
|
|
|
/* prototypes */ |
/* prototypes */ |
int compui(VL,USINT,USINT); |
int compui(VL,USINT,USINT); |
|
int compbytearray(VL,BYTEARRAY,BYTEARRAY); |
|
|
void powermodup(UP,UP *); |
void powermodup(UP,UP *); |
void hybrid_powermodup(UP,UP *); |
void hybrid_powermodup(UP,UP *); |
Line 963 int int_bits(int); |
|
Line 1120 int int_bits(int); |
|
|
|
|
|
LUM LUMALLOC(int, int); |
LUM LUMALLOC(int, int); |
|
BM BMALLOC(int, int); |
Obj ToAlg(Num); |
Obj ToAlg(Num); |
UM *berlemain(register int, UM, UM *); |
UM *berlemain(register int, UM, UM *); |
void *Risa_GC_malloc(size_t); |
void *Risa_GC_malloc(size_t); |
Line 974 void *GC_realloc(void *,size_t); |
|
Line 1132 void *GC_realloc(void *,size_t); |
|
double NatToReal(N,int *); |
double NatToReal(N,int *); |
double RatnToReal(Q); |
double RatnToReal(Q); |
double pwrreal0(double,int); |
double pwrreal0(double,int); |
|
double rtodbl(); /* XXX */ |
int **almat(int,int); |
int **almat(int,int); |
pointer **almat_pointer(int,int); |
pointer **almat_pointer(int,int); |
int berlecnt(register int,UM); |
int berlecnt(register int,UM); |
Line 1049 void divgfpn(GFPN,GFPN,GFPN *); |
|
Line 1208 void divgfpn(GFPN,GFPN,GFPN *); |
|
void chsgngfpn(GFPN,GFPN *); |
void chsgngfpn(GFPN,GFPN *); |
void pwrgfpn(GFPN,Q, GFPN *); |
void pwrgfpn(GFPN,Q, GFPN *); |
int cmpgfpn(GFPN,GFPN); |
int cmpgfpn(GFPN,GFPN); |
|
|
|
void addgfs(GFS,GFS,GFS *); |
|
void subgfs(GFS,GFS,GFS *); |
|
void mulgfs(GFS,GFS,GFS *); |
|
void divgfs(GFS,GFS,GFS *); |
|
void chsgngfs(GFS,GFS *); |
|
void pwrgfs(GFS,Q, GFS *); |
|
int cmpgfs(GFS,GFS); |
|
|
void addalg(Num,Num,Num *); |
void addalg(Num,Num,Num *); |
void addbf(Num,Num,Num *); |
void addbf(Num,Num,Num *); |