version 1.2, 2000/08/21 08:31:28 |
version 1.12, 2018/03/29 01:32:52 |
|
|
* shall be made on your publication or presentation in any form of the |
* shall be made on your publication or presentation in any form of the |
* results obtained by use of the SOFTWARE. |
* results obtained by use of the SOFTWARE. |
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
* e-mail at risa-admin@flab.fujitsu.co.jp of the detailed specification |
* e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification |
* for such modification or the source code of the modified part of the |
* for such modification or the source code of the modified part of the |
* SOFTWARE. |
* SOFTWARE. |
* |
* |
|
|
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* |
* |
* $OpenXM: OpenXM_contrib2/asir2000/engine/up_lm.c,v 1.1.1.1 1999/12/03 07:39:08 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/engine/up_lm.c,v 1.11 2015/08/14 13:51:55 fujimoto Exp $ |
*/ |
*/ |
#include "ca.h" |
#include "ca.h" |
#include <math.h> |
#include <math.h> |
Line 54 extern GC_dont_gc; |
|
Line 54 extern GC_dont_gc; |
|
extern struct oEGT eg_chrem,eg_fore,eg_back; |
extern struct oEGT eg_chrem,eg_fore,eg_back; |
extern int debug_up; |
extern int debug_up; |
extern int up_lazy; |
extern int up_lazy; |
|
extern int current_ff; |
|
|
void crup_lm(ModNum **,int,int *,int,N,N,UP *); |
void fft_mulup_lm(UP n1,UP n2,UP *nr) |
|
|
void fft_mulup_lm(n1,n2,nr) |
|
UP n1,n2; |
|
UP *nr; |
|
{ |
{ |
ModNum *f1,*f2,*w,*fr; |
ModNum *f1,*f2,*w,*fr; |
ModNum *frarray[1024]; |
ModNum *frarray[1024]; |
int modarray[1024]; |
int modarray[1024]; |
int frarray_index = 0; |
int frarray_index = 0; |
N m,m1,m2,lm_mod; |
N m,m1,m2,lm_mod; |
int d1,d2,dmin,i,mod,root,d,cond,bound; |
int d1,d2,dmin,i,mod,root,d,cond,bound; |
UP r; |
UP r; |
|
|
if ( !n1 || !n2 ) { |
if ( !n1 || !n2 ) { |
*nr = 0; return; |
*nr = 0; return; |
} |
} |
d1 = n1->d; d2 = n2->d; dmin = MIN(d1,d2); |
d1 = n1->d; d2 = n2->d; dmin = MIN(d1,d2); |
if ( !d1 || !d2 ) { |
if ( !d1 || !d2 ) { |
mulup(n1,n2,nr); return; |
mulup(n1,n2,nr); return; |
} |
} |
getmod_lm(&lm_mod); |
getmod_lm(&lm_mod); |
if ( !lm_mod ) |
if ( !lm_mod ) |
error("fft_mulup_lm : current_mod_lm is not set"); |
error("fft_mulup_lm : current_mod_lm is not set"); |
m = ONEN; |
m = ONEN; |
bound = maxblenup(n1)+maxblenup(n2)+int_bits(dmin)+2; |
bound = maxblenup(n1)+maxblenup(n2)+int_bits(dmin)+2; |
f1 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
f1 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
f2 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
f2 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
w = (ModNum *)ALLOCA(6*(1<<int_bits(d1+d2+1))*sizeof(ModNum)); |
w = (ModNum *)ALLOCA(6*(1<<int_bits(d1+d2+1))*sizeof(ModNum)); |
for ( i = 0; i < NPrimes; i++ ) { |
for ( i = 0; i < NPrimes; i++ ) { |
FFT_primes(i,&mod,&root,&d); |
FFT_primes(i,&mod,&root,&d); |
if ( (1<<d) < d1+d2+1 ) |
if ( (1<<d) < d1+d2+1 ) |
continue; |
continue; |
modarray[frarray_index] = mod; |
modarray[frarray_index] = mod; |
frarray[frarray_index++] = fr |
frarray[frarray_index++] = fr |
= (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
= (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
uptofmarray(mod,n1,f1); |
uptofmarray(mod,n1,f1); |
uptofmarray(mod,n2,f2); |
uptofmarray(mod,n2,f2); |
cond = FFT_pol_product(d1,f1,d2,f2,fr,i,w); |
cond = FFT_pol_product(d1,f1,d2,f2,fr,i,w); |
if ( cond ) |
if ( cond ) |
error("fft_mulup : error in FFT_pol_product"); |
error("fft_mulup : error in FFT_pol_product"); |
STON(mod,m1); muln(m,m1,&m2); m = m2; |
STON(mod,m1); muln(m,m1,&m2); m = m2; |
if ( n_bits(m) > bound ) { |
if ( n_bits(m) > bound ) { |
/* GC_dont_gc = 1; */ |
/* GC_dont_gc = 1; */ |
crup_lm(frarray,d1+d2,modarray,frarray_index,m,lm_mod,&r); |
crup_lm(frarray,d1+d2,modarray,frarray_index,m,lm_mod,&r); |
uptolmup(r,nr); |
uptolmup(r,nr); |
GC_dont_gc = 0; |
GC_dont_gc = 0; |
return; |
return; |
} |
} |
} |
} |
error("fft_mulup : FFT_primes exhausted"); |
error("fft_mulup : FFT_primes exhausted"); |
} |
} |
|
|
void fft_squareup_lm(n1,nr) |
void fft_squareup_lm(UP n1,UP *nr) |
UP n1; |
|
UP *nr; |
|
{ |
{ |
ModNum *f1,*w,*fr; |
ModNum *f1,*w,*fr; |
ModNum *frarray[1024]; |
ModNum *frarray[1024]; |
int modarray[1024]; |
int modarray[1024]; |
int frarray_index = 0; |
int frarray_index = 0; |
N m,m1,m2,lm_mod; |
N m,m1,m2,lm_mod; |
int d1,dmin,i,mod,root,d,cond,bound; |
int d1,dmin,i,mod,root,d,cond,bound; |
UP r; |
UP r; |
|
|
if ( !n1 ) { |
if ( !n1 ) { |
*nr = 0; return; |
*nr = 0; return; |
} |
} |
d1 = n1->d; dmin = d1; |
d1 = n1->d; dmin = d1; |
if ( !d1 ) { |
if ( !d1 ) { |
mulup(n1,n1,nr); return; |
mulup(n1,n1,nr); return; |
} |
} |
getmod_lm(&lm_mod); |
getmod_lm(&lm_mod); |
if ( !lm_mod ) |
if ( !lm_mod ) |
error("fft_squareup_lm : current_mod_lm is not set"); |
error("fft_squareup_lm : current_mod_lm is not set"); |
m = ONEN; |
m = ONEN; |
bound = 2*maxblenup(n1)+int_bits(d1)+2; |
bound = 2*maxblenup(n1)+int_bits(d1)+2; |
f1 = (ModNum *)ALLOCA((2*d1+1)*sizeof(ModNum)); |
f1 = (ModNum *)ALLOCA((2*d1+1)*sizeof(ModNum)); |
w = (ModNum *)ALLOCA(6*(1<<int_bits(2*d1+1))*sizeof(ModNum)); |
w = (ModNum *)ALLOCA(6*(1<<int_bits(2*d1+1))*sizeof(ModNum)); |
for ( i = 0; i < NPrimes; i++ ) { |
for ( i = 0; i < NPrimes; i++ ) { |
FFT_primes(i,&mod,&root,&d); |
FFT_primes(i,&mod,&root,&d); |
if ( (1<<d) < 2*d1+1 ) |
if ( (1<<d) < 2*d1+1 ) |
continue; |
continue; |
modarray[frarray_index] = mod; |
modarray[frarray_index] = mod; |
frarray[frarray_index++] = fr |
frarray[frarray_index++] = fr |
= (ModNum *)ALLOCA((2*d1+1)*sizeof(ModNum)); |
= (ModNum *)ALLOCA((2*d1+1)*sizeof(ModNum)); |
uptofmarray(mod,n1,f1); |
uptofmarray(mod,n1,f1); |
cond = FFT_pol_square(d1,f1,fr,i,w); |
cond = FFT_pol_square(d1,f1,fr,i,w); |
if ( cond ) |
if ( cond ) |
error("fft_mulup : error in FFT_pol_product"); |
error("fft_mulup : error in FFT_pol_product"); |
STON(mod,m1); muln(m,m1,&m2); m = m2; |
STON(mod,m1); muln(m,m1,&m2); m = m2; |
if ( n_bits(m) > bound ) { |
if ( n_bits(m) > bound ) { |
/* GC_dont_gc = 1; */ |
/* GC_dont_gc = 1; */ |
crup_lm(frarray,2*d1,modarray,frarray_index,m,lm_mod,&r); |
crup_lm(frarray,2*d1,modarray,frarray_index,m,lm_mod,&r); |
uptolmup(r,nr); |
uptolmup(r,nr); |
GC_dont_gc = 0; |
GC_dont_gc = 0; |
return; |
return; |
} |
} |
} |
} |
error("fft_squareup : FFT_primes exhausted"); |
error("fft_squareup : FFT_primes exhausted"); |
} |
} |
|
|
void trunc_fft_mulup_lm(n1,n2,dbd,nr) |
void trunc_fft_mulup_lm(UP n1,UP n2,int dbd,UP *nr) |
UP n1,n2; |
|
int dbd; |
|
UP *nr; |
|
{ |
{ |
ModNum *f1,*f2,*fr,*w; |
ModNum *f1,*f2,*fr,*w; |
ModNum *frarray[1024]; |
ModNum *frarray[1024]; |
int modarray[1024]; |
int modarray[1024]; |
int frarray_index = 0; |
int frarray_index = 0; |
N m,m1,m2,lm_mod; |
N m,m1,m2,lm_mod; |
int d1,d2,dmin,i,mod,root,d,cond,bound; |
int d1,d2,dmin,i,mod,root,d,cond,bound; |
UP r; |
UP r; |
|
|
if ( !n1 || !n2 ) { |
if ( !n1 || !n2 ) { |
*nr = 0; return; |
*nr = 0; return; |
} |
} |
d1 = n1->d; d2 = n2->d; dmin = MIN(d1,d2); |
d1 = n1->d; d2 = n2->d; dmin = MIN(d1,d2); |
if ( !d1 || !d2 ) { |
if ( !d1 || !d2 ) { |
tmulup(n1,n2,dbd,nr); return; |
tmulup(n1,n2,dbd,nr); return; |
} |
} |
getmod_lm(&lm_mod); |
getmod_lm(&lm_mod); |
if ( !lm_mod ) |
if ( !lm_mod ) |
error("trunc_fft_mulup_lm : current_mod_lm is not set"); |
error("trunc_fft_mulup_lm : current_mod_lm is not set"); |
m = ONEN; |
m = ONEN; |
bound = maxblenup(n1)+maxblenup(n2)+int_bits(dmin)+2; |
bound = maxblenup(n1)+maxblenup(n2)+int_bits(dmin)+2; |
f1 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
f1 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
f2 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
f2 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
w = (ModNum *)ALLOCA(6*(1<<int_bits(d1+d2+1))*sizeof(ModNum)); |
w = (ModNum *)ALLOCA(6*(1<<int_bits(d1+d2+1))*sizeof(ModNum)); |
for ( i = 0; i < NPrimes; i++ ) { |
for ( i = 0; i < NPrimes; i++ ) { |
FFT_primes(i,&mod,&root,&d); |
FFT_primes(i,&mod,&root,&d); |
if ( (1<<d) < d1+d2+1 ) |
if ( (1<<d) < d1+d2+1 ) |
continue; |
continue; |
|
|
modarray[frarray_index] = mod; |
modarray[frarray_index] = mod; |
frarray[frarray_index++] = fr |
frarray[frarray_index++] = fr |
= (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
= (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum)); |
uptofmarray(mod,n1,f1); |
uptofmarray(mod,n1,f1); |
uptofmarray(mod,n2,f2); |
uptofmarray(mod,n2,f2); |
cond = FFT_pol_product(d1,f1,d2,f2,fr,i,w); |
cond = FFT_pol_product(d1,f1,d2,f2,fr,i,w); |
if ( cond ) |
if ( cond ) |
error("fft_mulup : error in FFT_pol_product"); |
error("fft_mulup : error in FFT_pol_product"); |
STON(mod,m1); muln(m,m1,&m2); m = m2; |
STON(mod,m1); muln(m,m1,&m2); m = m2; |
if ( n_bits(m) > bound ) { |
if ( n_bits(m) > bound ) { |
/* GC_dont_gc = 1; */ |
/* GC_dont_gc = 1; */ |
crup_lm(frarray,MIN(dbd-1,d1+d2),modarray,frarray_index,m,lm_mod,&r); |
crup_lm(frarray,MIN(dbd-1,d1+d2),modarray,frarray_index,m,lm_mod,&r); |
uptolmup(r,nr); |
uptolmup(r,nr); |
GC_dont_gc = 0; |
GC_dont_gc = 0; |
return; |
return; |
} |
} |
} |
} |
error("trunc_fft_mulup : FFT_primes exhausted"); |
error("trunc_fft_mulup : FFT_primes exhausted"); |
} |
} |
|
|
void crup_lm(f,d,mod,index,m,lm_mod,r) |
void crup_lm(ModNum **f,int d,int *mod,int index,N m,N lm_mod,UP *r) |
ModNum **f; |
|
int d; |
|
int *mod; |
|
int index; |
|
N m; |
|
N lm_mod; |
|
UP *r; |
|
{ |
{ |
double *k; |
double *k; |
double c2; |
double c2; |
unsigned int *w; |
unsigned int *w; |
unsigned int zi,au,al; |
unsigned int zi,au,al; |
UL a; |
UL a; |
int i,j,l,len; |
int i,j,l,len; |
UP s,s1,u; |
UP s,s1,u; |
struct oUP c; |
struct oUP c; |
N t,ci,mi,qn; |
N t,ci,mi,qn; |
unsigned int **sum; |
unsigned int **sum; |
unsigned int *sum_b; |
unsigned int *sum_b; |
Q q; |
Q q; |
struct oEGT eg0,eg1; |
|
|
|
if ( !lm_mod ) |
if ( !lm_mod ) |
error("crup_lm : current_mod_lm is not set"); |
error("crup_lm : current_mod_lm is not set"); |
k = (double *)ALLOCA((d+1)*sizeof(double)); |
k = (double *)ALLOCA((d+1)*sizeof(double)); |
for ( j = 0; j <= d; j++ ) |
for ( j = 0; j <= d; j++ ) |
k[j] = 0.5; |
k[j] = 0.5; |
up_lazy = 1; |
up_lazy = 1; |
sum = (unsigned int **)ALLOCA((d+1)*sizeof(unsigned int *)); |
sum = (unsigned int **)ALLOCA((d+1)*sizeof(unsigned int *)); |
len = (int_bits(index)+n_bits(lm_mod)+31)/32+1; |
len = (int_bits(index)+n_bits(lm_mod)+31)/32+1; |
w = (unsigned int *)ALLOCA((len+1)*sizeof(unsigned int)); |
w = (unsigned int *)ALLOCA((len+1)*sizeof(unsigned int)); |
sum_b = (unsigned int *)MALLOC_ATOMIC((d+1)*len*sizeof(unsigned int)); |
sum_b = (unsigned int *)MALLOC_ATOMIC((d+1)*len*sizeof(unsigned int)); |
for ( j = 0; j <= d; j++ ) { |
for ( j = 0; j <= d; j++ ) { |
sum[j] = sum_b+len*j; |
sum[j] = sum_b+len*j; |
bzero((char *)sum[j],len*sizeof(unsigned int)); |
bzero((char *)sum[j],len*sizeof(unsigned int)); |
} |
} |
for ( i = 0, s = 0; i < index; i++ ) { |
for ( i = 0, s = 0; i < index; i++ ) { |
divin(m,mod[i],&ci); |
divin(m,mod[i],&ci); |
zi = (unsigned int)invm((unsigned int)rem(ci,mod[i]),mod[i]); |
zi = (unsigned int)invm((unsigned int)rem(ci,mod[i]),mod[i]); |
|
|
STON(zi,t); muln(ci,t,&mi); |
STON(zi,t); muln(ci,t,&mi); |
divn(mi,lm_mod,&qn,&t); |
divn(mi,lm_mod,&qn,&t); |
if ( t ) |
if ( t ) |
for ( j = 0; j <= d; j++ ) { |
for ( j = 0; j <= d; j++ ) { |
bzero((char *)w,(len+1)*sizeof(unsigned int)); |
bzero((char *)w,(len+1)*sizeof(unsigned int)); |
muln_1(BD(t),PL(t),(unsigned int)f[i][j],w); |
muln_1(BD(t),PL(t),(unsigned int)f[i][j],w); |
for ( l = PL(t); l >= 0 && !w[l]; l--); |
for ( l = PL(t); l >= 0 && !w[l]; l--); |
l++; |
l++; |
if ( l ) |
if ( l ) |
addarray_to(w,l,sum[j],len); |
addarray_to(w,l,sum[j],len); |
} |
} |
c2 = (double)zi/(double)mod[i]; |
c2 = (double)zi/(double)mod[i]; |
for ( j = 0; j <= d; j++ ) |
for ( j = 0; j <= d; j++ ) |
k[j] += c2*f[i][j]; |
k[j] += c2*f[i][j]; |
} |
} |
uiarraytoup(sum,len,d,&s); |
uiarraytoup(sum,len,d,&s); |
GC_free(sum_b); |
GCFREE(sum_b); |
|
|
u = UPALLOC(d); |
u = UPALLOC(d); |
for ( j = 0; j <= d; j++ ) { |
for ( j = 0; j <= d; j++ ) { |
#if 1 |
#if 1 |
a = (UL)floor(k[j]); |
a = (UL)floor(k[j]); |
#if defined(i386) || defined(__alpha) || defined(VISUAL) |
#if defined(i386) || defined(__alpha) || defined(VISUAL) || defined(__MINGW32__) || defined(__x86_64) |
au = ((unsigned int *)&a)[1]; |
au = ((unsigned int *)&a)[1]; |
al = ((unsigned int *)&a)[0]; |
al = ((unsigned int *)&a)[0]; |
#else |
#else |
al = ((unsigned int *)&a)[1]; |
al = ((unsigned int *)&a)[1]; |
au = ((unsigned int *)&a)[0]; |
au = ((unsigned int *)&a)[0]; |
#endif |
#endif |
if ( au ) { |
if ( au ) { |
NEWQ(q); SGN(q) = 1; NM(q)=NALLOC(2); DN(q)=0; |
NEWQ(q); SGN(q) = 1; NM(q)=NALLOC(2); DN(q)=0; |
PL(NM(q))=2; BD(NM(q))[0]=al; BD(NM(q))[1] = au; |
PL(NM(q))=2; BD(NM(q))[0]=al; BD(NM(q))[1] = au; |
} else |
} else |
UTOQ(al,q); |
UTOQ(al,q); |
#else |
#else |
al = (int)floor(k[j]); STOQ(al,q); |
al = (int)floor(k[j]); STOQ(al,q); |
#endif |
#endif |
u->c[j] = (Num)q; |
u->c[j] = (Num)q; |
} |
} |
for ( j = d; j >= 0 && !u->c[j]; j-- ); |
for ( j = d; j >= 0 && !u->c[j]; j-- ); |
if ( j < 0 ) |
if ( j < 0 ) |
u = 0; |
u = 0; |
else |
else |
u->d = j; |
u->d = j; |
divn(m,lm_mod,&qn,&t); NTOQ(t,-1,q); |
divn(m,lm_mod,&qn,&t); NTOQ(t,-1,q); |
c.d = 0; c.c[0] = (Num)q; |
c.d = 0; c.c[0] = (Num)q; |
mulup(u,&c,&s1); |
mulup(u,&c,&s1); |
up_lazy = 0; |
up_lazy = 0; |
|
|
addup(s,s1,r); |
addup(s,s1,r); |
} |
} |
|
|
void fft_rembymulup_special_lm(n1,n2,inv2,nr) |
void fft_rembymulup_special_lm(UP n1,UP n2,UP inv2,UP *nr) |
UP n1,n2,inv2; |
|
UP *nr; |
|
{ |
{ |
int d1,d2,d; |
int d1,d2,d; |
UP r1,t,s,q,u; |
UP r1,t,s,q,u; |
|
|
if ( !n2 ) |
if ( !n2 ) |
error("rembymulup : division by 0"); |
error("rembymulup : division by 0"); |
else if ( !n1 || !n2->d ) |
else if ( !n1 || !n2->d ) |
*nr = 0; |
*nr = 0; |
else if ( (d1 = n1->d) < (d2 = n2->d) ) |
else if ( (d1 = n1->d) < (d2 = n2->d) ) |
*nr = n1; |
*nr = n1; |
else { |
else { |
d = d1-d2; |
d = d1-d2; |
reverseup(n1,d1,&t); truncup(t,d+1,&r1); |
reverseup(n1,d1,&t); truncup(t,d+1,&r1); |
trunc_fft_mulup_lm(r1,inv2,d+1,&t); |
trunc_fft_mulup_lm(r1,inv2,d+1,&t); |
truncup(t,d+1,&s); |
truncup(t,d+1,&s); |
reverseup(s,d,&q); |
reverseup(s,d,&q); |
trunc_fft_mulup_lm(q,n2,d2,&t); truncup(t,d2,&u); |
trunc_fft_mulup_lm(q,n2,d2,&t); truncup(t,d2,&u); |
truncup(n1,d2,&s); |
truncup(n1,d2,&s); |
subup(s,u,nr); |
subup(s,u,nr); |
} |
} |
} |
} |
|
|
void uptolmup(n,nr) |
void uptolmup(UP n,UP *nr) |
UP n; |
|
UP *nr; |
|
{ |
{ |
int i,d; |
int i,d; |
Q *c; |
Q *c; |
LM *cr; |
LM *cr; |
UP r; |
UP r; |
|
|
if ( !n ) |
if ( !n ) |
*nr = 0; |
*nr = 0; |
else { |
else { |
d = n->d; c = (Q *)n->c; |
d = n->d; c = (Q *)n->c; |
*nr = r = UPALLOC(d); cr = (LM *)r->c; |
*nr = r = UPALLOC(d); cr = (LM *)r->c; |
for ( i = 0; i <= d; i++ ) |
for ( i = 0; i <= d; i++ ) |
qtolm(c[i],&cr[i]); |
qtolm(c[i],&cr[i]); |
for ( i = d; i >= 0 && !cr[i]; i-- ); |
for ( i = d; i >= 0 && !cr[i]; i-- ); |
if ( i < 0 ) |
if ( i < 0 ) |
*nr = 0; |
*nr = 0; |
else |
else |
r->d = i; |
r->d = i; |
} |
} |
} |
} |
|
|
save_up(obj,name) |
void save_up(UP obj,char *name) |
UP obj; |
|
char *name; |
|
{ |
{ |
P p; |
P p; |
Obj ret; |
Obj ret; |
NODE n0,n1; |
NODE n0,n1; |
STRING s; |
STRING s; |
|
void Pbsave(); |
|
|
uptop(obj,&p); |
uptop(obj,&p); |
MKSTR(s,name); |
MKSTR(s,name); |
MKNODE(n1,s,0); MKNODE(n0,p,n1); |
MKNODE(n1,s,0); MKNODE(n0,p,n1); |
Pbsave(n0,&ret); |
Pbsave(n0,&ret); |
} |
} |
|
|
void hybrid_powermodup(f,xp) |
void hybrid_powermodup(UP f,UP *xp) |
UP f; |
|
UP *xp; |
|
{ |
{ |
N n; |
N n; |
UP x,y,t,invf,s; |
UP x,y,t,invf,s; |
int k; |
int k; |
LM lm; |
LM lm; |
struct oEGT eg_sq,eg_rem,eg_mul,eg_inv,eg0,eg1,eg2,eg3; |
|
char name[BUFSIZ]; |
|
|
|
getmod_lm(&n); |
getmod_lm(&n); |
if ( !n ) |
if ( !n ) |
error("hybrid_powermodup : current_mod_lm is not set"); |
error("hybrid_powermodup : current_mod_lm is not set"); |
MKLM(ONEN,lm); |
MKLM(ONEN,lm); |
x = UPALLOC(1); x->d = 1; x->c[1] = (Num)lm; |
x = UPALLOC(1); x->d = 1; x->c[1] = (Num)lm; |
y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm; |
y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm; |
|
|
reverseup(f,f->d,&t); |
reverseup(f,f->d,&t); |
invmodup(t,f->d,&s); uptolmup(s,&invf); |
invmodup(t,f->d,&s); uptolmup(s,&invf); |
for ( k = n_bits(n)-1; k >= 0; k-- ) { |
for ( k = n_bits(n)-1; k >= 0; k-- ) { |
hybrid_squareup(FF_GFP,y,&t); |
hybrid_squareup(FF_GFP,y,&t); |
hybrid_rembymulup_special(FF_GFP,t,f,invf,&s); |
hybrid_rembymulup_special(FF_GFP,t,f,invf,&s); |
y = s; |
y = s; |
if ( n->b[k/32] & (1<<(k%32)) ) { |
if ( n->b[k/32] & (1<<(k%32)) ) { |
mulup(y,x,&t); |
mulup(y,x,&t); |
remup(t,f,&s); |
remup(t,f,&s); |
y = s; |
y = s; |
} |
} |
} |
} |
*xp = y; |
*xp = y; |
} |
} |
|
|
void powermodup(f,xp) |
void powermodup(UP f,UP *xp) |
UP f; |
|
UP *xp; |
|
{ |
{ |
N n; |
N n; |
UP x,y,t,invf,s; |
UP x,y,t,invf,s; |
int k; |
int k; |
LM lm; |
Num c; |
struct oEGT eg_sq,eg_rem,eg_mul,eg_inv,eg0,eg1,eg2,eg3; |
|
|
|
field_order_ff(&n); |
if ( !current_ff ) |
if ( !n ) |
error("powermodup : current_ff is not set"); |
error("powermodup : current_mod_lm is not set"); |
field_order_ff(&n); |
MKLM(ONEN,lm); |
one_ff(&c); |
x = UPALLOC(1); x->d = 1; x->c[1] = (Num)lm; |
x = UPALLOC(1); x->d = 1; x->c[1] = c; |
y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm; |
y = UPALLOC(0); y->d = 0; y->c[0] = c; |
|
|
reverseup(f,f->d,&t); |
reverseup(f,f->d,&t); |
invmodup(t,f->d,&s); uptolmup(s,&invf); |
invmodup(t,f->d,&s); |
for ( k = n_bits(n)-1; k >= 0; k-- ) { |
switch ( current_ff ) { |
ksquareup(y,&t); |
case FF_GFP: |
rembymulup_special(t,f,invf,&s); |
case FF_GFPN: |
y = s; |
uptolmup(s,&invf); |
if ( n->b[k/32] & (1<<(k%32)) ) { |
break; |
mulup(y,x,&t); |
case FF_GFS: |
remup(t,f,&s); |
case FF_GFSN: |
y = s; |
invf = s; /* XXX */ |
} |
break; |
} |
default: |
*xp = y; |
error("powermodup : not implemented yet"); |
|
} |
|
for ( k = n_bits(n)-1; k >= 0; k-- ) { |
|
ksquareup(y,&t); |
|
rembymulup_special(t,f,invf,&s); |
|
y = s; |
|
if ( n->b[k/32] & (1<<(k%32)) ) { |
|
mulup(y,x,&t); |
|
remup(t,f,&s); |
|
y = s; |
|
} |
|
} |
|
*xp = y; |
} |
} |
|
|
/* g^d mod f */ |
/* g^d mod f */ |
|
|
void hybrid_generic_powermodup(g,f,d,xp) |
void hybrid_generic_powermodup(UP g,UP f,Q d,UP *xp) |
UP g,f; |
|
Q d; |
|
UP *xp; |
|
{ |
{ |
N e; |
N e; |
UP x,y,t,invf,s; |
UP x,y,t,invf,s; |
int k; |
int k; |
LM lm; |
LM lm; |
struct oEGT eg_sq,eg_rem,eg_mul,eg_inv,eg0,eg1,eg2,eg3; |
|
|
|
e = NM(d); |
e = NM(d); |
MKLM(ONEN,lm); |
MKLM(ONEN,lm); |
y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm; |
y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm; |
remup(g,f,&x); |
remup(g,f,&x); |
if ( !x ) { |
if ( !x ) { |
*xp = !d ? y : 0; |
*xp = !d ? y : 0; |
return; |
return; |
} else if ( !x->d ) { |
} else if ( !x->d ) { |
pwrup(x,d,xp); |
pwrup(x,d,xp); |
return; |
return; |
} |
} |
reverseup(f,f->d,&t); |
reverseup(f,f->d,&t); |
invmodup(t,f->d,&invf); |
invmodup(t,f->d,&invf); |
for ( k = n_bits(e)-1; k >= 0; k-- ) { |
for ( k = n_bits(e)-1; k >= 0; k-- ) { |
hybrid_squareup(FF_GFP,y,&t); |
hybrid_squareup(FF_GFP,y,&t); |
hybrid_rembymulup_special(FF_GFP,t,f,invf,&s); |
hybrid_rembymulup_special(FF_GFP,t,f,invf,&s); |
y = s; |
y = s; |
if ( e->b[k/32] & (1<<(k%32)) ) { |
if ( e->b[k/32] & (1<<(k%32)) ) { |
mulup(y,x,&t); |
mulup(y,x,&t); |
remup(t,f,&s); |
remup(t,f,&s); |
y = s; |
y = s; |
} |
} |
} |
} |
*xp = y; |
*xp = y; |
} |
} |
|
|
void generic_powermodup(g,f,d,xp) |
void generic_powermodup(UP g,UP f,Q d,UP *xp) |
UP g,f; |
|
Q d; |
|
UP *xp; |
|
{ |
{ |
N e; |
N e; |
UP x,y,t,invf,s; |
UP x,y,t,invf,s; |
int k; |
int k; |
LM lm; |
Num c; |
struct oEGT eg_sq,eg_rem,eg_mul,eg_inv,eg0,eg1,eg2,eg3; |
|
|
|
e = NM(d); |
e = NM(d); |
MKLM(ONEN,lm); |
one_ff(&c); |
y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm; |
y = UPALLOC(0); y->d = 0; y->c[0] = c; |
remup(g,f,&x); |
remup(g,f,&x); |
if ( !x ) { |
if ( !x ) { |
*xp = !d ? y : 0; |
*xp = !d ? y : 0; |
return; |
return; |
} else if ( !x->d ) { |
} else if ( !x->d ) { |
pwrup(x,d,xp); |
pwrup(x,d,xp); |
return; |
return; |
} |
} |
reverseup(f,f->d,&t); |
reverseup(f,f->d,&t); |
invmodup(t,f->d,&invf); |
invmodup(t,f->d,&invf); |
for ( k = n_bits(e)-1; k >= 0; k-- ) { |
for ( k = n_bits(e)-1; k >= 0; k-- ) { |
ksquareup(y,&t); |
ksquareup(y,&t); |
rembymulup_special(t,f,invf,&s); |
rembymulup_special(t,f,invf,&s); |
y = s; |
y = s; |
if ( e->b[k/32] & (1<<(k%32)) ) { |
if ( e->b[k/32] & (1<<(k%32)) ) { |
mulup(y,x,&t); |
mulup(y,x,&t); |
remup(t,f,&s); |
remup(t,f,&s); |
y = s; |
y = s; |
} |
} |
} |
} |
*xp = y; |
*xp = y; |
} |
} |
|
|
void hybrid_powertabup(f,xp,tab) |
void hybrid_powertabup(UP f,UP xp,UP *tab) |
UP f; |
|
UP xp; |
|
UP *tab; |
|
{ |
{ |
UP y,t,invf; |
UP y,t,invf; |
int i,d; |
int i,d; |
LM lm; |
LM lm; |
struct oEGT eg_rem,eg_mul,eg0,eg1,eg2; |
|
|
|
d = f->d; |
d = f->d; |
MKLM(ONEN,lm); |
MKLM(ONEN,lm); |
y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm; |
y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm; |
tab[0] = y; |
tab[0] = y; |
tab[1] = xp; |
tab[1] = xp; |
|
|
reverseup(f,f->d,&t); |
reverseup(f,f->d,&t); |
invmodup(t,f->d,&invf); |
invmodup(t,f->d,&invf); |
|
|
for ( i = 2; i < d; i++ ) { |
for ( i = 2; i < d; i++ ) { |
if ( debug_up ) |
if ( debug_up ){ |
fprintf(stderr,"."); |
fprintf(stderr,"."); |
hybrid_mulup(FF_GFP,tab[i-1],xp,&t); |
} |
hybrid_rembymulup_special(FF_GFP,t,f,invf,&tab[i]); |
hybrid_mulup(FF_GFP,tab[i-1],xp,&t); |
} |
hybrid_rembymulup_special(FF_GFP,t,f,invf,&tab[i]); |
|
} |
} |
} |
|
|
void powertabup(f,xp,tab) |
void powertabup(UP f,UP xp,UP *tab) |
UP f; |
|
UP xp; |
|
UP *tab; |
|
{ |
{ |
UP y,t,invf; |
UP y,t,invf; |
int i,d; |
int i,d; |
LM lm; |
Num c; |
struct oEGT eg_rem,eg_mul,eg0,eg1,eg2; |
|
|
|
d = f->d; |
d = f->d; |
MKLM(ONEN,lm); |
one_ff(&c); |
y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm; |
y = UPALLOC(0); y->d = 0; y->c[0] = c; |
tab[0] = y; |
tab[0] = y; |
tab[1] = xp; |
tab[1] = xp; |
|
|
reverseup(f,f->d,&t); |
reverseup(f,f->d,&t); |
invmodup(t,f->d,&invf); |
invmodup(t,f->d,&invf); |
|
|
for ( i = 2; i < d; i++ ) { |
for ( i = 2; i < d; i++ ) { |
if ( debug_up ) |
if ( debug_up ){ |
fprintf(stderr,"."); |
fprintf(stderr,"."); |
kmulup(tab[i-1],xp,&t); |
} |
rembymulup_special(t,f,invf,&tab[i]); |
kmulup(tab[i-1],xp,&t); |
} |
rembymulup_special(t,f,invf,&tab[i]); |
|
} |
} |
} |