| version 1.7, 2000/07/13 05:09:00 |
version 1.20, 2002/01/28 00:54:43 |
|
|
| /* $OpenXM: OpenXM_contrib2/asir2000/engine/dist.c,v 1.6 2000/05/30 01:35:12 noro Exp $ */ |
/* |
| |
* Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED |
| |
* All rights reserved. |
| |
* |
| |
* FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, |
| |
* non-exclusive and royalty-free license to use, copy, modify and |
| |
* redistribute, solely for non-commercial and non-profit purposes, the |
| |
* computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and |
| |
* conditions of this Agreement. For the avoidance of doubt, you acquire |
| |
* only a limited right to use the SOFTWARE hereunder, and FLL or any |
| |
* third party developer retains all rights, including but not limited to |
| |
* copyrights, in and to the SOFTWARE. |
| |
* |
| |
* (1) FLL does not grant you a license in any way for commercial |
| |
* purposes. You may use the SOFTWARE only for non-commercial and |
| |
* non-profit purposes only, such as academic, research and internal |
| |
* business use. |
| |
* (2) The SOFTWARE is protected by the Copyright Law of Japan and |
| |
* international copyright treaties. If you make copies of the SOFTWARE, |
| |
* with or without modification, as permitted hereunder, you shall affix |
| |
* to all such copies of the SOFTWARE the above copyright notice. |
| |
* (3) An explicit reference to this SOFTWARE and its copyright owner |
| |
* shall be made on your publication or presentation in any form of the |
| |
* results obtained by use of the SOFTWARE. |
| |
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
| |
* e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification |
| |
* for such modification or the source code of the modified part of the |
| |
* SOFTWARE. |
| |
* |
| |
* THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL |
| |
* MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND |
| |
* EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS |
| |
* FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' |
| |
* RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY |
| |
* MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. |
| |
* UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, |
| |
* OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY |
| |
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL |
| |
* DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES |
| |
* ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES |
| |
* FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY |
| |
* DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF |
| |
* SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART |
| |
* OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY |
| |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| |
* |
| |
* $OpenXM: OpenXM_contrib2/asir2000/engine/dist.c,v 1.19 2001/10/09 01:36:11 noro Exp $ |
| |
*/ |
| #include "ca.h" |
#include "ca.h" |
| |
|
| #define NV(p) ((p)->nv) |
|
| #define C(p) ((p)->c) |
|
| |
|
| #define ORD_REVGRADLEX 0 |
#define ORD_REVGRADLEX 0 |
| #define ORD_GRADLEX 1 |
#define ORD_GRADLEX 1 |
| #define ORD_LEX 2 |
#define ORD_LEX 2 |
|
|
| #define ORD_BGRADREV 7 |
#define ORD_BGRADREV 7 |
| #define ORD_BLEXREV 8 |
#define ORD_BLEXREV 8 |
| #define ORD_ELIM 9 |
#define ORD_ELIM 9 |
| |
#define ORD_WEYL_ELIM 10 |
| |
#define ORD_HOMO_WW_DRL 11 |
| |
|
| int (*cmpdl)()=cmpdl_revgradlex; |
int (*cmpdl)()=cmpdl_revgradlex; |
| int (*primitive_cmpdl[3])() = {cmpdl_revgradlex,cmpdl_gradlex,cmpdl_lex}; |
int (*primitive_cmpdl[3])() = {cmpdl_revgradlex,cmpdl_gradlex,cmpdl_lex}; |
| |
|
| void comm_muld(VL,DP,DP,DP *); |
|
| void weyl_muld(VL,DP,DP,DP *); |
|
| void weyl_muldm(VL,DP,MP,DP *); |
|
| void weyl_mulmm(VL,MP,MP,int,DP *); |
|
| void mkwc(int,int,Q *); |
|
| |
|
| int do_weyl; |
int do_weyl; |
| |
|
| int dp_nelim,dp_fcoeffs; |
int dp_nelim,dp_fcoeffs; |
| struct order_spec dp_current_spec; |
struct order_spec dp_current_spec; |
| int *dp_dl_work; |
int *dp_dl_work; |
| |
|
| int has_fcoef(DP); |
int has_fcoef(DP f) |
| int has_fcoef_p(P); |
|
| |
|
| int has_fcoef(f) |
|
| DP f; |
|
| { |
{ |
| MP t; |
MP t; |
| |
|
|
|
| return t ? 1 : 0; |
return t ? 1 : 0; |
| } |
} |
| |
|
| int has_fcoef_p(f) |
int has_fcoef_p(P f) |
| P f; |
|
| { |
{ |
| DCP dc; |
DCP dc; |
| |
|
| if ( !f ) |
if ( !f ) |
| return 0; |
return 0; |
| else if ( NUM(f) ) |
else if ( NUM(f) ) |
| return (NID((Num)f) == N_LM || NID((Num)f) == N_GF2N) ? 1 : 0; |
return (NID((Num)f) == N_LM |
| |
|| NID((Num)f) == N_GF2N |
| |
|| NID((Num)f) == N_GFPN |
| |
|| NID((Num)f) == N_GFS) ? 1 : 0; |
| else { |
else { |
| for ( dc = DC(f); dc; dc = NEXT(dc) ) |
for ( dc = DC(f); dc; dc = NEXT(dc) ) |
| if ( has_fcoef_p(COEF(dc)) ) |
if ( has_fcoef_p(COEF(dc)) ) |
|
|
| } |
} |
| } |
} |
| |
|
| void initd(spec) |
void initd(struct order_spec *spec) |
| struct order_spec *spec; |
|
| { |
{ |
| switch ( spec->id ) { |
switch ( spec->id ) { |
| case 2: |
case 2: |
| Line 94 struct order_spec *spec; |
|
| Line 132 struct order_spec *spec; |
|
| cmpdl = cmpdl_blexrev; break; |
cmpdl = cmpdl_blexrev; break; |
| case ORD_ELIM: |
case ORD_ELIM: |
| cmpdl = cmpdl_elim; break; |
cmpdl = cmpdl_elim; break; |
| |
case ORD_WEYL_ELIM: |
| |
cmpdl = cmpdl_weyl_elim; break; |
| |
case ORD_HOMO_WW_DRL: |
| |
cmpdl = cmpdl_homo_ww_drl; break; |
| case ORD_LEX: default: |
case ORD_LEX: default: |
| cmpdl = cmpdl_lex; break; |
cmpdl = cmpdl_lex; break; |
| } |
} |
| Line 102 struct order_spec *spec; |
|
| Line 144 struct order_spec *spec; |
|
| dp_current_spec = *spec; |
dp_current_spec = *spec; |
| } |
} |
| |
|
| void ptod(vl,dvl,p,pr) |
void ptod(VL vl,VL dvl,P p,DP *pr) |
| VL vl,dvl; |
|
| P p; |
|
| DP *pr; |
|
| { |
{ |
| int isconst = 0; |
int isconst = 0; |
| int n,i; |
int n,i,j,k; |
| VL tvl; |
VL tvl; |
| V v; |
V v; |
| DL d; |
DL d; |
| MP m; |
MP m; |
| DCP dc; |
DCP dc; |
| |
DCP *w; |
| DP r,s,t,u; |
DP r,s,t,u; |
| P x,c; |
P x,c; |
| |
|
|
|
| for ( i = 0, tvl = dvl, v = VR(p); |
for ( i = 0, tvl = dvl, v = VR(p); |
| tvl && tvl->v != v; tvl = NEXT(tvl), i++ ); |
tvl && tvl->v != v; tvl = NEXT(tvl), i++ ); |
| if ( !tvl ) { |
if ( !tvl ) { |
| for ( dc = DC(p), s = 0, MKV(v,x); dc; dc = NEXT(dc) ) { |
for ( dc = DC(p), k = 0; dc; dc = NEXT(dc), k++ ); |
| ptod(vl,dvl,COEF(dc),&t); pwrp(vl,x,DEG(dc),&c); |
w = (DCP *)ALLOCA(k*sizeof(DCP)); |
| |
for ( dc = DC(p), j = 0; j < k; dc = NEXT(dc), j++ ) |
| |
w[j] = dc; |
| |
|
| |
for ( j = k-1, s = 0, MKV(v,x); j >= 0; j-- ) { |
| |
ptod(vl,dvl,COEF(w[j]),&t); pwrp(vl,x,DEG(w[j]),&c); |
| muldc(vl,t,c,&r); addd(vl,r,s,&t); s = t; |
muldc(vl,t,c,&r); addd(vl,r,s,&t); s = t; |
| } |
} |
| *pr = s; |
*pr = s; |
| } else { |
} else { |
| for ( dc = DC(p), s = 0; dc; dc = NEXT(dc) ) { |
for ( dc = DC(p), k = 0; dc; dc = NEXT(dc), k++ ); |
| ptod(vl,dvl,COEF(dc),&t); |
w = (DCP *)ALLOCA(k*sizeof(DCP)); |
| NEWDL(d,n); d->td = QTOS(DEG(dc)); d->d[i] = d->td; |
for ( dc = DC(p), j = 0; j < k; dc = NEXT(dc), j++ ) |
| |
w[j] = dc; |
| |
|
| |
for ( j = k-1, s = 0; j >= 0; j-- ) { |
| |
ptod(vl,dvl,COEF(w[j]),&t); |
| |
NEWDL(d,n); d->d[i] = QTOS(DEG(w[j])); |
| |
d->td = MUL_WEIGHT(d->d[i],i); |
| NEWMP(m); m->dl = d; C(m) = (P)ONE; NEXT(m) = 0; MKDP(n,m,u); u->sugar = d->td; |
NEWMP(m); m->dl = d; C(m) = (P)ONE; NEXT(m) = 0; MKDP(n,m,u); u->sugar = d->td; |
| comm_muld(vl,t,u,&r); addd(vl,r,s,&t); s = t; |
comm_muld(vl,t,u,&r); addd(vl,r,s,&t); s = t; |
| } |
} |
|
|
| } |
} |
| } |
} |
| } |
} |
| |
#if 0 |
| if ( !dp_fcoeffs && has_fcoef(*pr) ) |
if ( !dp_fcoeffs && has_fcoef(*pr) ) |
| dp_fcoeffs = 1; |
dp_fcoeffs = 1; |
| |
#endif |
| } |
} |
| |
|
| void dtop(vl,dvl,p,pr) |
void dtop(VL vl,VL dvl,DP p,P *pr) |
| VL vl,dvl; |
|
| DP p; |
|
| P *pr; |
|
| { |
{ |
| int n,i; |
int n,i,j,k; |
| DL d; |
DL d; |
| MP m; |
MP m; |
| |
MP *a; |
| P r,s,t,u,w; |
P r,s,t,u,w; |
| Q q; |
Q q; |
| VL tvl; |
VL tvl; |
|
|
| if ( !p ) |
if ( !p ) |
| *pr = 0; |
*pr = 0; |
| else { |
else { |
| for ( n = p->nv, m = BDY(p), s = 0; m; m = NEXT(m) ) { |
for ( k = 0, m = BDY(p); m; m = NEXT(m), k++ ); |
| |
a = (MP *)ALLOCA(k*sizeof(MP)); |
| |
for ( j = 0, m = BDY(p); j < k; m = NEXT(m), j++ ) |
| |
a[j] = m; |
| |
|
| |
for ( n = p->nv, j = k-1, s = 0; j >= 0; j-- ) { |
| |
m = a[j]; |
| t = C(m); |
t = C(m); |
| if ( NUM(t) && NID((Num)t) == N_M ) { |
if ( NUM(t) && NID((Num)t) == N_M ) { |
| mptop(t,&u); t = u; |
mptop(t,&u); t = u; |
|
|
| } |
} |
| } |
} |
| |
|
| void nodetod(node,dp) |
void nodetod(NODE node,DP *dp) |
| NODE node; |
|
| DP *dp; |
|
| { |
{ |
| NODE t; |
NODE t; |
| int len,i,td; |
int len,i,td; |
|
|
| else if ( !NUM(e) || !RATN(e) || !INT(e) ) |
else if ( !NUM(e) || !RATN(e) || !INT(e) ) |
| error("nodetod : invalid input"); |
error("nodetod : invalid input"); |
| else { |
else { |
| d->d[i] = QTOS((Q)e); td += d->d[i]; |
d->d[i] = QTOS((Q)e); td += MUL_WEIGHT(d->d[i],i); |
| } |
} |
| } |
} |
| d->td = td; |
d->td = td; |
|
|
| MKDP(len,m,u); u->sugar = td; *dp = u; |
MKDP(len,m,u); u->sugar = td; *dp = u; |
| } |
} |
| |
|
| int sugard(m) |
int sugard(MP m) |
| MP m; |
|
| { |
{ |
| int s; |
int s; |
| |
|
|
|
| return s; |
return s; |
| } |
} |
| |
|
| void addd(vl,p1,p2,pr) |
void addd(VL vl,DP p1,DP p2,DP *pr) |
| VL vl; |
|
| DP p1,p2,*pr; |
|
| { |
{ |
| int n; |
int n; |
| MP m1,m2,mr,mr0; |
MP m1,m2,mr,mr0; |
|
|
| |
|
| /* for F4 symbolic reduction */ |
/* for F4 symbolic reduction */ |
| |
|
| void symb_addd(p1,p2,pr) |
void symb_addd(DP p1,DP p2,DP *pr) |
| DP p1,p2,*pr; |
|
| { |
{ |
| int n; |
int n; |
| MP m1,m2,mr,mr0; |
MP m1,m2,mr,mr0; |
| P t; |
|
| |
|
| if ( !p1 ) |
if ( !p1 ) |
| *pr = p2; |
*pr = p2; |
|
|
| * return : a merged list |
* return : a merged list |
| */ |
*/ |
| |
|
| NODE symb_merge(m1,m2,n) |
NODE symb_merge(NODE m1,NODE m2,int n) |
| NODE m1,m2; |
|
| int n; |
|
| { |
{ |
| NODE top,prev,cur,m,t; |
NODE top,prev,cur,m,t; |
| |
|
|
|
| } |
} |
| } |
} |
| |
|
| void subd(vl,p1,p2,pr) |
DLBUCKET symb_merge_bucket(DLBUCKET m1,DLBUCKET m2,int n) |
| VL vl; |
|
| DP p1,p2,*pr; |
|
| { |
{ |
| |
DLBUCKET top,prev,cur,m,t; |
| |
|
| |
if ( !m1 ) |
| |
return m2; |
| |
else if ( !m2 ) |
| |
return m1; |
| |
else { |
| |
if ( m1->td == m2->td ) { |
| |
top = m1; |
| |
BDY(top) = symb_merge(BDY(top),BDY(m2),n); |
| |
m = NEXT(m2); |
| |
} else if ( m1->td > m2->td ) { |
| |
top = m1; m = m2; |
| |
} else { |
| |
top = m2; m = m1; |
| |
} |
| |
prev = top; cur = NEXT(top); |
| |
/* prev->td > m->td always holds */ |
| |
while ( cur && m ) { |
| |
if ( cur->td == m->td ) { |
| |
BDY(cur) = symb_merge(BDY(cur),BDY(m),n); |
| |
m = NEXT(m); |
| |
prev = cur; cur = NEXT(cur); |
| |
} else if ( cur->td > m->td ) { |
| |
t = NEXT(cur); NEXT(cur) = m; m = t; |
| |
prev = cur; cur = NEXT(cur); |
| |
} else { |
| |
NEXT(prev) = m; m = cur; |
| |
prev = NEXT(prev); cur = NEXT(prev); |
| |
} |
| |
} |
| |
if ( !cur ) |
| |
NEXT(prev) = m; |
| |
return top; |
| |
} |
| |
} |
| |
|
| |
void subd(VL vl,DP p1,DP p2,DP *pr) |
| |
{ |
| DP t; |
DP t; |
| |
|
| if ( !p2 ) |
if ( !p2 ) |
|
|
| } |
} |
| } |
} |
| |
|
| void chsgnd(p,pr) |
void chsgnd(DP p,DP *pr) |
| DP p,*pr; |
|
| { |
{ |
| MP m,mr,mr0; |
MP m,mr,mr0; |
| |
|
|
|
| } |
} |
| } |
} |
| |
|
| void muld(vl,p1,p2,pr) |
void muld(VL vl,DP p1,DP p2,DP *pr) |
| VL vl; |
|
| DP p1,p2,*pr; |
|
| { |
{ |
| if ( ! do_weyl ) |
if ( ! do_weyl ) |
| comm_muld(vl,p1,p2,pr); |
comm_muld(vl,p1,p2,pr); |
|
|
| weyl_muld(vl,p1,p2,pr); |
weyl_muld(vl,p1,p2,pr); |
| } |
} |
| |
|
| void comm_muld(vl,p1,p2,pr) |
void comm_muld(VL vl,DP p1,DP p2,DP *pr) |
| VL vl; |
|
| DP p1,p2,*pr; |
|
| { |
{ |
| MP m; |
MP m; |
| DP s,t,u; |
DP s,t,u; |
|
|
| } |
} |
| } |
} |
| |
|
| void muldm(vl,p,m0,pr) |
void muldm(VL vl,DP p,MP m0,DP *pr) |
| VL vl; |
|
| DP p; |
|
| MP m0; |
|
| DP *pr; |
|
| { |
{ |
| MP m,mr,mr0; |
MP m,mr,mr0; |
| P c; |
P c; |
|
|
| } |
} |
| } |
} |
| |
|
| void weyl_muld(vl,p1,p2,pr) |
void weyl_muld(VL vl,DP p1,DP p2,DP *pr) |
| VL vl; |
|
| DP p1,p2,*pr; |
|
| { |
{ |
| MP m; |
MP m; |
| DP s,t,u; |
DP s,t,u; |
|
|
| else if ( OID(p2) <= O_P ) |
else if ( OID(p2) <= O_P ) |
| muldc(vl,p1,(P)p2,pr); |
muldc(vl,p1,(P)p2,pr); |
| else { |
else { |
| for ( m = BDY(p2), l = 0; m; m = NEXT(m), l++ ); |
for ( m = BDY(p1), l = 0; m; m = NEXT(m), l++ ); |
| if ( l > wlen ) { |
if ( l > wlen ) { |
| if ( w ) GC_free(w); |
if ( w ) GC_free(w); |
| w = (MP *)MALLOC(l*sizeof(MP)); |
w = (MP *)MALLOC(l*sizeof(MP)); |
| wlen = l; |
wlen = l; |
| } |
} |
| for ( m = BDY(p2), i = 0; i < l; m = NEXT(m), i++ ) |
for ( m = BDY(p1), i = 0; i < l; m = NEXT(m), i++ ) |
| w[i] = m; |
w[i] = m; |
| for ( s = 0, i = l-1; i >= 0; i-- ) { |
for ( s = 0, i = l-1; i >= 0; i-- ) { |
| weyl_muldm(vl,p1,w[i],&t); addd(vl,s,t,&u); s = u; |
weyl_muldm(vl,w[i],p2,&t); addd(vl,s,t,&u); s = u; |
| } |
} |
| bzero(w,l*sizeof(MP)); |
bzero(w,l*sizeof(MP)); |
| *pr = s; |
*pr = s; |
| } |
} |
| } |
} |
| |
|
| void weyl_muldm(vl,p,m0,pr) |
/* monomial * polynomial */ |
| VL vl; |
|
| DP p; |
void weyl_muldm(VL vl,MP m0,DP p,DP *pr) |
| MP m0; |
|
| DP *pr; |
|
| { |
{ |
| DP r,t,t1; |
DP r,t,t1; |
| MP m; |
MP m; |
| int n,l,i; |
DL d0; |
| static MP *w; |
int n,n2,l,i,j,tlen; |
| |
static MP *w,*psum; |
| |
static struct cdl *tab; |
| static int wlen; |
static int wlen; |
| |
static int rtlen; |
| |
|
| if ( !p ) |
if ( !p ) |
| *pr = 0; |
*pr = 0; |
|
|
| } |
} |
| for ( m = BDY(p), i = 0; i < l; m = NEXT(m), i++ ) |
for ( m = BDY(p), i = 0; i < l; m = NEXT(m), i++ ) |
| w[i] = m; |
w[i] = m; |
| for ( r = 0, i = l-1, n = NV(p); i >= 0; i-- ) { |
|
| weyl_mulmm(vl,w[i],m0,n,&t); |
n = NV(p); n2 = n>>1; |
| addd(vl,r,t,&t1); r = t1; |
d0 = m0->dl; |
| |
for ( i = 0, tlen = 1; i < n2; i++ ) |
| |
tlen *= d0->d[n2+i]+1; |
| |
if ( tlen > rtlen ) { |
| |
if ( tab ) GC_free(tab); |
| |
if ( psum ) GC_free(psum); |
| |
rtlen = tlen; |
| |
tab = (struct cdl *)MALLOC(rtlen*sizeof(struct cdl)); |
| |
psum = (MP *)MALLOC(rtlen*sizeof(MP)); |
| } |
} |
| bzero(w,l*sizeof(MP)); |
bzero(psum,tlen*sizeof(MP)); |
| |
for ( i = l-1; i >= 0; i-- ) { |
| |
bzero(tab,tlen*sizeof(struct cdl)); |
| |
weyl_mulmm(vl,m0,w[i],n,tab,tlen); |
| |
for ( j = 0; j < tlen; j++ ) { |
| |
if ( tab[j].c ) { |
| |
NEWMP(m); m->dl = tab[j].d; C(m) = tab[j].c; NEXT(m) = psum[j]; |
| |
psum[j] = m; |
| |
} |
| |
} |
| |
} |
| |
for ( j = tlen-1, r = 0; j >= 0; j-- ) |
| |
if ( psum[j] ) { |
| |
MKDP(n,psum[j],t); addd(vl,r,t,&t1); r = t1; |
| |
} |
| if ( r ) |
if ( r ) |
| r->sugar = p->sugar + m0->dl->td; |
r->sugar = p->sugar + m0->dl->td; |
| *pr = r; |
*pr = r; |
| } |
} |
| } |
} |
| |
|
| /* m0 = x0^d0*x1^d1*... * dx0^d(n/2)*dx1^d(n/2+1)*... */ |
/* m0 = x0^d0*x1^d1*... * dx0^e0*dx1^e1*... */ |
| |
/* rtab : array of length (e0+1)*(e1+1)*... */ |
| |
|
| void weyl_mulmm(vl,m0,m1,n,pr) |
void weyl_mulmm(VL vl,MP m0,MP m1,int n,struct cdl *rtab,int rtablen) |
| VL vl; |
|
| MP m0,m1; |
|
| int n; |
|
| DP *pr; |
|
| { |
{ |
| MP m,mr,mr0; |
P c,c0,c1; |
| DP r,t,t1; |
DL d,d0,d1,dt; |
| P c,c0,c1,cc; |
int i,j,a,b,k,l,n2,s,min,curlen; |
| DL d,d0,d1; |
struct cdl *p; |
| int i,j,a,b,k,l,n2,s,min; |
static Q *ctab; |
| static Q *tab; |
static struct cdl *tab; |
| static int tablen; |
static int tablen; |
| |
static struct cdl *tmptab; |
| |
static int tmptablen; |
| |
|
| if ( !m0 || !m1 ) |
|
| *pr = 0; |
if ( !m0 || !m1 ) { |
| else { |
rtab[0].c = 0; |
| c0 = C(m0); c1 = C(m1); |
rtab[0].d = 0; |
| mulp(vl,c0,c1,&c); |
return; |
| d0 = m0->dl; d1 = m1->dl; |
} |
| n2 = n>>1; |
c0 = C(m0); c1 = C(m1); |
| if ( n & 1 ) { |
mulp(vl,c0,c1,&c); |
| /* homogenized computation; dx-xd=h^2 */ |
d0 = m0->dl; d1 = m1->dl; |
| /* offset of h-degree */ |
n2 = n>>1; |
| NEWDL(d,n); |
curlen = 1; |
| d->td = d->d[n-1] = d0->d[n-1]+d1->d[n-1]; |
NEWDL(d,n); |
| NEWMP(mr); mr->c = (P)ONE; mr->dl = d; |
if ( n & 1 ) |
| MKDP(n,mr,r); r->sugar = d->td; |
/* offset of h-degree */ |
| } else |
d->td = d->d[n-1] = d0->d[n-1]+d1->d[n-1]; |
| r = (DP)ONE; |
else |
| for ( i = 0; i < n2; i++ ) { |
d->td = 0; |
| a = d0->d[i]; b = d1->d[n2+i]; |
rtab[0].c = c; |
| k = d0->d[n2+i]; l = d1->d[i]; |
rtab[0].d = d; |
| /* degree of xi^a*(Di^k*xi^l)*Di^b */ |
|
| s = a+k+l+b; |
|
| /* compute xi^a*(Di^k*xi^l)*Di^b */ |
|
| min = MIN(k,l); |
|
| |
|
| if ( min+1 > tablen ) { |
if ( rtablen > tmptablen ) { |
| if ( tab ) GC_free(tab); |
if ( tmptab ) GC_free(tmptab); |
| tab = (Q *)MALLOC((min+1)*sizeof(Q)); |
tmptab = (struct cdl *)MALLOC(rtablen*sizeof(struct cdl)); |
| tablen = min+1; |
tmptablen = rtablen; |
| } |
} |
| mkwc(k,l,tab); |
for ( i = 0; i < n2; i++ ) { |
| if ( n & 1 ) |
a = d0->d[i]; b = d1->d[n2+i]; |
| for ( mr0 = 0, j = 0; j <= min; j++ ) { |
k = d0->d[n2+i]; l = d1->d[i]; |
| NEXTMP(mr0,mr); NEWDL(d,n); |
|
| d->d[i] = l-j+a; d->d[n2+i] = k-j+b; |
/* degree of xi^a*(Di^k*xi^l)*Di^b */ |
| d->td = s; |
a += l; |
| d->d[n-1] = s-(d->d[i]+d->d[n2+i]); |
b += k; |
| mr->c = (P)tab[j]; mr->dl = d; |
s = MUL_WEIGHT(a,i)+MUL_WEIGHT(b,n2+i); |
| |
|
| |
if ( !k || !l ) { |
| |
for ( j = 0, p = rtab; j < curlen; j++, p++ ) { |
| |
if ( p->c ) { |
| |
dt = p->d; |
| |
dt->d[i] = a; |
| |
dt->d[n2+i] = b; |
| |
dt->td += s; |
| } |
} |
| else |
} |
| for ( mr0 = 0, s = 0, j = 0; j <= min; j++ ) { |
curlen *= k+1; |
| NEXTMP(mr0,mr); NEWDL(d,n); |
continue; |
| d->d[i] = l-j+a; d->d[n2+i] = k-j+b; |
|
| d->td = d->d[i]+d->d[n2+i]; /* XXX */ |
|
| s = MAX(s,d->td); /* XXX */ |
|
| mr->c = (P)tab[j]; mr->dl = d; |
|
| } |
|
| bzero(tab,(min+1)*sizeof(Q)); |
|
| if ( mr0 ) |
|
| NEXT(mr) = 0; |
|
| MKDP(n,mr0,t); |
|
| if ( t ) |
|
| t->sugar = s; |
|
| comm_muld(vl,r,t,&t1); r = t1; |
|
| } |
} |
| muldc(vl,r,c,pr); |
if ( k+1 > tablen ) { |
| |
if ( tab ) GC_free(tab); |
| |
if ( ctab ) GC_free(ctab); |
| |
tablen = k+1; |
| |
tab = (struct cdl *)MALLOC(tablen*sizeof(struct cdl)); |
| |
ctab = (Q *)MALLOC(tablen*sizeof(Q)); |
| |
} |
| |
/* compute xi^a*(Di^k*xi^l)*Di^b */ |
| |
min = MIN(k,l); |
| |
mkwc(k,l,ctab); |
| |
bzero(tab,(k+1)*sizeof(struct cdl)); |
| |
if ( n & 1 ) |
| |
for ( j = 0; j <= min; j++ ) { |
| |
NEWDL(d,n); |
| |
d->d[i] = a-j; d->d[n2+i] = b-j; |
| |
d->td = s; |
| |
d->d[n-1] = s-(MUL_WEIGHT(a-j,i)+MUL_WEIGHT(b-j,n2+i)); |
| |
tab[j].d = d; |
| |
tab[j].c = (P)ctab[j]; |
| |
} |
| |
else |
| |
for ( j = 0; j <= min; j++ ) { |
| |
NEWDL(d,n); |
| |
d->d[i] = a-j; d->d[n2+i] = b-j; |
| |
d->td = MUL_WEIGHT(a-j,i)+MUL_WEIGHT(b-j,n2+i); /* XXX */ |
| |
tab[j].d = d; |
| |
tab[j].c = (P)ctab[j]; |
| |
} |
| |
bzero(ctab,(min+1)*sizeof(Q)); |
| |
comm_muld_tab(vl,n,rtab,curlen,tab,k+1,tmptab); |
| |
curlen *= k+1; |
| |
bcopy(tmptab,rtab,curlen*sizeof(struct cdl)); |
| } |
} |
| } |
} |
| |
|
| void muldc(vl,p,c,pr) |
/* direct product of two cdl tables |
| VL vl; |
rt[] = [ |
| DP p; |
t[0]*t1[0],...,t[n-1]*t1[0], |
| P c; |
t[0]*t1[1],...,t[n-1]*t1[1], |
| DP *pr; |
... |
| |
t[0]*t1[n1-1],...,t[n-1]*t1[n1-1] |
| |
] |
| |
*/ |
| |
|
| |
void comm_muld_tab(VL vl,int nv,struct cdl *t,int n,struct cdl *t1,int n1,struct cdl *rt) |
| { |
{ |
| |
int i,j; |
| |
struct cdl *p; |
| |
P c; |
| |
DL d; |
| |
|
| |
bzero(rt,n*n1*sizeof(struct cdl)); |
| |
for ( j = 0, p = rt; j < n1; j++ ) { |
| |
c = t1[j].c; |
| |
d = t1[j].d; |
| |
if ( !c ) |
| |
break; |
| |
for ( i = 0; i < n; i++, p++ ) { |
| |
if ( t[i].c ) { |
| |
mulp(vl,t[i].c,c,&p->c); |
| |
adddl(nv,t[i].d,d,&p->d); |
| |
} |
| |
} |
| |
} |
| |
} |
| |
|
| |
void muldc(VL vl,DP p,P c,DP *pr) |
| |
{ |
| MP m,mr,mr0; |
MP m,mr,mr0; |
| |
|
| if ( !p || !c ) |
if ( !p || !c ) |
|
|
| } |
} |
| } |
} |
| |
|
| void divsdc(vl,p,c,pr) |
void divsdc(VL vl,DP p,P c,DP *pr) |
| VL vl; |
|
| DP p; |
|
| P c; |
|
| DP *pr; |
|
| { |
{ |
| MP m,mr,mr0; |
MP m,mr,mr0; |
| |
|
|
|
| } |
} |
| } |
} |
| |
|
| void adddl(n,d1,d2,dr) |
void adddl(int n,DL d1,DL d2,DL *dr) |
| int n; |
|
| DL d1,d2; |
|
| DL *dr; |
|
| { |
{ |
| DL dt; |
DL dt; |
| int i; |
int i; |
|
|
| } |
} |
| } |
} |
| |
|
| int compd(vl,p1,p2) |
/* d1 += d2 */ |
| VL vl; |
|
| DP p1,p2; |
void adddl_destructive(int n,DL d1,DL d2) |
| { |
{ |
| |
int i; |
| |
|
| |
d1->td += d2->td; |
| |
for ( i = 0; i < n; i++ ) |
| |
d1->d[i] += d2->d[i]; |
| |
} |
| |
|
| |
int compd(VL vl,DP p1,DP p2) |
| |
{ |
| int n,t; |
int n,t; |
| MP m1,m2; |
MP m1,m2; |
| |
|
|
|
| } |
} |
| } |
} |
| |
|
| int cmpdl_lex(n,d1,d2) |
int cmpdl_lex(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| int i; |
int i; |
| |
|
|
|
| return i == n ? 0 : (d1->d[i] > d2->d[i] ? 1 : -1); |
return i == n ? 0 : (d1->d[i] > d2->d[i] ? 1 : -1); |
| } |
} |
| |
|
| int cmpdl_revlex(n,d1,d2) |
int cmpdl_revlex(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| int i; |
int i; |
| |
|
|
|
| return i < 0 ? 0 : (d1->d[i] < d2->d[i] ? 1 : -1); |
return i < 0 ? 0 : (d1->d[i] < d2->d[i] ? 1 : -1); |
| } |
} |
| |
|
| int cmpdl_gradlex(n,d1,d2) |
int cmpdl_gradlex(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| if ( d1->td > d2->td ) |
if ( d1->td > d2->td ) |
| return 1; |
return 1; |
|
|
| return cmpdl_lex(n,d1,d2); |
return cmpdl_lex(n,d1,d2); |
| } |
} |
| |
|
| int cmpdl_revgradlex(n,d1,d2) |
int cmpdl_revgradlex(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| register int i; |
register int i; |
| register int *p1,*p2; |
register int *p1,*p2; |
|
|
| } |
} |
| } |
} |
| |
|
| int cmpdl_blex(n,d1,d2) |
int cmpdl_blex(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| int c; |
int c; |
| |
|
|
|
| } |
} |
| } |
} |
| |
|
| int cmpdl_bgradlex(n,d1,d2) |
int cmpdl_bgradlex(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| int e1,e2,c; |
int e1,e2,c; |
| |
|
|
|
| } |
} |
| } |
} |
| |
|
| int cmpdl_brevgradlex(n,d1,d2) |
int cmpdl_brevgradlex(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| int e1,e2,c; |
int e1,e2,c; |
| |
|
|
|
| } |
} |
| } |
} |
| |
|
| int cmpdl_brevrev(n,d1,d2) |
int cmpdl_brevrev(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| int e1,e2,f1,f2,c,i; |
int e1,e2,f1,f2,c,i; |
| |
|
|
|
| } |
} |
| } |
} |
| |
|
| int cmpdl_bgradrev(n,d1,d2) |
int cmpdl_bgradrev(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| int e1,e2,f1,f2,c,i; |
int e1,e2,f1,f2,c,i; |
| |
|
|
|
| } |
} |
| } |
} |
| |
|
| int cmpdl_blexrev(n,d1,d2) |
int cmpdl_blexrev(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| int e1,e2,f1,f2,c,i; |
int e1,e2,f1,f2,c,i; |
| |
|
|
|
| } |
} |
| } |
} |
| |
|
| int cmpdl_elim(n,d1,d2) |
int cmpdl_elim(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| int e1,e2,i; |
int e1,e2,i; |
| |
|
|
|
| return cmpdl_revgradlex(n,d1,d2); |
return cmpdl_revgradlex(n,d1,d2); |
| } |
} |
| |
|
| int cmpdl_order_pair(n,d1,d2) |
int cmpdl_weyl_elim(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| |
int e1,e2,i; |
| |
|
| |
for ( i = 1, e1 = 0, e2 = 0; i <= dp_nelim; i++ ) { |
| |
e1 += d1->d[n-i]; e2 += d2->d[n-i]; |
| |
} |
| |
if ( e1 > e2 ) |
| |
return 1; |
| |
else if ( e1 < e2 ) |
| |
return -1; |
| |
else if ( d1->td > d2->td ) |
| |
return 1; |
| |
else if ( d1->td < d2->td ) |
| |
return -1; |
| |
else return -cmpdl_revlex(n,d1,d2); |
| |
} |
| |
|
| |
/* |
| |
a special ordering |
| |
1. total order |
| |
2. (-w,w) for the first 2*m variables |
| |
3. DRL for the first 2*m variables |
| |
*/ |
| |
|
| |
extern int *current_weyl_weight_vector; |
| |
|
| |
int cmpdl_homo_ww_drl(int n,DL d1,DL d2) |
| |
{ |
| |
int e1,e2,m,i; |
| |
int *p1,*p2; |
| |
|
| |
if ( d1->td > d2->td ) |
| |
return 1; |
| |
else if ( d1->td < d2->td ) |
| |
return -1; |
| |
|
| |
m = n>>1; |
| |
for ( i = 0, e1 = e2 = 0; i < m; i++ ) { |
| |
e1 += current_weyl_weight_vector[i]*(d1->d[m+i] - d1->d[i]); |
| |
e2 += current_weyl_weight_vector[i]*(d2->d[m+i] - d2->d[i]); |
| |
} |
| |
if ( e1 > e2 ) |
| |
return 1; |
| |
else if ( e1 < e2 ) |
| |
return -1; |
| |
|
| |
e1 = d1->td - d1->d[n-1]; |
| |
e2 = d2->td - d2->d[n-1]; |
| |
if ( e1 > e2 ) |
| |
return 1; |
| |
else if ( e1 < e2 ) |
| |
return -1; |
| |
|
| |
for ( i= n - 1, p1 = d1->d+n-1, p2 = d2->d+n-1; |
| |
i >= 0 && *p1 == *p2; i--, p1--, p2-- ); |
| |
return i < 0 ? 0 : (*p1 < *p2 ? 1 : -1); |
| |
} |
| |
|
| |
int cmpdl_order_pair(int n,DL d1,DL d2) |
| |
{ |
| int e1,e2,i,j,l; |
int e1,e2,i,j,l; |
| int *t1,*t2; |
int *t1,*t2; |
| int len; |
int len,head; |
| struct order_pair *pair; |
struct order_pair *pair; |
| |
|
| len = dp_current_spec.ord.block.length; |
len = dp_current_spec.ord.block.length; |
| pair = dp_current_spec.ord.block.order_pair; |
pair = dp_current_spec.ord.block.order_pair; |
| |
|
| |
head = 0; |
| for ( i = 0, t1 = d1->d, t2 = d2->d; i < len; i++ ) { |
for ( i = 0, t1 = d1->d, t2 = d2->d; i < len; i++ ) { |
| l = pair[i].length; |
l = pair[i].length; |
| switch ( pair[i].order ) { |
switch ( pair[i].order ) { |
| case 0: |
case 0: |
| for ( j = 0, e1 = e2 = 0; j < l; j++ ) { |
for ( j = 0, e1 = e2 = 0; j < l; j++ ) { |
| e1 += t1[j]; e2 += t2[j]; |
e1 += MUL_WEIGHT(t1[j],head+j); |
| |
e2 += MUL_WEIGHT(t2[j],head+j); |
| } |
} |
| if ( e1 > e2 ) |
if ( e1 > e2 ) |
| return 1; |
return 1; |
|
|
| break; |
break; |
| case 1: |
case 1: |
| for ( j = 0, e1 = e2 = 0; j < l; j++ ) { |
for ( j = 0, e1 = e2 = 0; j < l; j++ ) { |
| e1 += t1[j]; e2 += t2[j]; |
e1 += MUL_WEIGHT(t1[j],head+j); |
| |
e2 += MUL_WEIGHT(t2[j],head+j); |
| } |
} |
| if ( e1 > e2 ) |
if ( e1 > e2 ) |
| return 1; |
return 1; |
|
|
| default: |
default: |
| error("cmpdl_order_pair : invalid order"); break; |
error("cmpdl_order_pair : invalid order"); break; |
| } |
} |
| t1 += l; t2 += l; |
t1 += l; t2 += l; head += l; |
| } |
} |
| return 0; |
return 0; |
| } |
} |
| |
|
| int cmpdl_matrix(n,d1,d2) |
int cmpdl_matrix(int n,DL d1,DL d2) |
| int n; |
|
| DL d1,d2; |
|
| { |
{ |
| int *v,*w,*t1,*t2; |
int *v,*w,*t1,*t2; |
| int s,i,j,len; |
int s,i,j,len; |