| version 1.5, 2005/07/14 22:46:03 |
version 1.8, 2019/06/04 07:11:22 |
|
|
| /* |
/* |
| * $OpenXM: OpenXM_contrib2/asir2000/builtin/isolv.c,v 1.4 2005/02/08 18:06:05 saito Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/builtin/isolv.c,v 1.7 2018/03/29 01:32:50 noro Exp $ |
| */ |
*/ |
| |
|
| #include "ca.h" |
#include "ca.h" |
|
|
| static void Solve(NODE, Obj *); |
static void Solve(NODE, Obj *); |
| static void NSolve(NODE, Obj *); |
static void NSolve(NODE, Obj *); |
| |
|
| |
/* in builtin/vars.c */ |
| |
void Pvars(); |
| |
|
| |
/* */ |
| void Solve1(P, Q, pointer *); |
void Solve1(P, Q, pointer *); |
| void Sturm(P, VECT *); |
void Sturm(P, VECT *); |
| void boundbody(P, Q *); |
void boundbody(P, Q *); |
| void binary(int , MAT); |
void binary(int , MAT); |
| void separate(Q, Q, VECT, Q, Q, int, int, MAT, int *); |
void separate(Q, Q, VECT, Q, Q, int, int, MAT, int *); |
| void ueval(P, Q, Q *); |
void ueval(P, Q, Q *); |
| |
int stumq(VECT, Q); |
| |
|
| |
|
| |
// in engine/bf.c |
| |
Num tobf(Num,int); |
| |
|
| struct ftab isolv_tab[] = { |
struct ftab isolv_tab[] = { |
| {"solve", Solve, 2}, |
{"solve", Solve, 2}, |
| {"nsolve", NSolve, 2}, |
{"nsolve", NSolve, 2}, |
| {0,0,0}, |
{0,0,0}, |
| }; |
}; |
| |
|
| static void |
static void |
|
|
| NODE arg; |
NODE arg; |
| Obj *rp; |
Obj *rp; |
| { |
{ |
| pointer p, Eps; |
pointer p, Eps; |
| pointer root; |
pointer root; |
| V v; |
V v; |
| Q eps; |
Q eps; |
| |
|
| p = (pointer)ARG0(arg); |
p = (pointer)ARG0(arg); |
| if ( !p ) { |
if ( !p ) { |
| *rp = 0; |
*rp = 0; |
| return; |
return; |
| } |
} |
| Eps = (pointer)ARG1(arg); |
Eps = (pointer)ARG1(arg); |
| asir_assert(Eps, O_N, "solve"); |
asir_assert(Eps, O_N, "solve"); |
| if ( NID(Eps) != N_Q ) { |
if ( NID(Eps) != N_Q ) { |
| fprintf(stderr,"solve arg 2 is required a rational number"); |
fprintf(stderr,"solve arg 2 is required a rational number"); |
| error(" : invalid argument"); |
error(" : invalid argument"); |
| return; |
return; |
| } |
} |
| DUPQ((Q)Eps, eps); |
DUPQ((Q)Eps, eps); |
| SGN(eps) = 1; |
SGN(eps) = 1; |
| switch (OID(p)) { |
switch (OID(p)) { |
| case O_N: |
case O_N: |
| *rp = 0; |
*rp = 0; |
| break; |
break; |
| case O_P: |
case O_P: |
| Pvars(arg, &root); |
Pvars(arg, &root); |
| if (NEXT(BDY((LIST)root)) != 0) { |
if (NEXT(BDY((LIST)root)) != 0) { |
| fprintf(stderr,"solve arg 1 is univariate polynormial"); |
fprintf(stderr,"solve arg 1 is univariate polynormial"); |
| error(" : invalid argument"); |
error(" : invalid argument"); |
| break; |
break; |
| } |
} |
| Solve1((P)p, eps, &root); |
Solve1((P)p, eps, &root); |
| *rp = (Obj)root; |
*rp = (Obj)root; |
| break; |
break; |
| case O_LIST: |
case O_LIST: |
| fprintf(stderr,"solve,"); |
fprintf(stderr,"solve,"); |
| error(" : Sorry, not yet implement of multivars"); |
error(" : Sorry, not yet implement of multivars"); |
| break; |
break; |
| default: |
default: |
| *rp = 0; |
*rp = 0; |
| } |
} |
| } |
} |
| |
|
| static void |
static void |
| NSolve(arg, rp) |
NSolve(NODE arg, Obj *rp) |
| NODE arg; |
|
| Obj *rp; |
|
| { |
{ |
| pointer p, Eps; |
pointer p, Eps; |
| pointer root; |
pointer root; |
| LIST listp; |
LIST listp; |
| V v; |
V v; |
| Q eps; |
Q eps; |
| NODE n, n0, m0, m, ln0; |
NODE n, n0, m0, m, ln0; |
| Num r; |
Num r; |
| Itv iv; |
Itv iv; |
| BF breal; |
BF breal; |
| |
|
| p = (pointer)ARG0(arg); |
p = (pointer)ARG0(arg); |
| if ( !p ) { |
if ( !p ) { |
| *rp = 0; |
*rp = 0; |
| return; |
return; |
| } |
} |
| Eps = (pointer)ARG1(arg); |
Eps = (pointer)ARG1(arg); |
| asir_assert(Eps, O_N, "solve"); |
asir_assert(Eps, O_N, "solve"); |
| if ( NID(Eps) != N_Q ) { |
if ( NID(Eps) != N_Q ) { |
| fprintf(stderr,"solve arg 2 is required a rational number"); |
fprintf(stderr,"solve arg 2 is required a rational number"); |
| error(" : invalid argument"); |
error(" : invalid argument"); |
| return; |
return; |
| } |
} |
| DUPQ((Q)Eps, eps); |
DUPQ((Q)Eps, eps); |
| SGN(eps) = 1; |
SGN(eps) = 1; |
| switch (OID(p)) { |
switch (OID(p)) { |
| case O_N: |
case O_N: |
| *rp = 0; |
*rp = 0; |
| break; |
break; |
| case O_P: |
case O_P: |
| Pvars(arg, &root); |
Pvars(arg, &root); |
| if (NEXT(BDY((LIST)root)) != 0) { |
if (NEXT(BDY((LIST)root)) != 0) { |
| fprintf(stderr,"solve arg 1 is univariate polynormial"); |
fprintf(stderr,"solve arg 1 is univariate polynormial"); |
| error(" : invalid argument"); |
error(" : invalid argument"); |
| break; |
break; |
| } |
} |
| Solve1((P)p, eps, &root); |
Solve1((P)p, eps, &root); |
| for (m0 = BDY((LIST)root), n0 = 0; m0; m0 = NEXT(m0)) { |
for (m0 = BDY((LIST)root), n0 = 0; m0; m0 = NEXT(m0)) { |
| m = BDY((LIST)BDY(m0)); |
m = BDY((LIST)BDY(m0)); |
| miditvp(BDY(m), &r); |
miditvp(BDY(m), &r); |
| ToBf(r, &breal); |
//ToBf(r, &breal); |
| NEXTNODE( n0, n ); |
breal = (BF)tobf(r, DEFAULTPREC); |
| MKNODE(ln0, breal, NEXT(m)); |
NEXTNODE( n0, n ); |
| MKLIST((LIST)listp, ln0); |
MKNODE(ln0, breal, NEXT(m)); |
| BDY(n) = (pointer)listp; |
MKLIST(listp, ln0); |
| } |
BDY(n) = (pointer)listp; |
| NEXT(n) = 0; |
} |
| MKLIST((LIST)listp,n0); |
NEXT(n) = 0; |
| *rp = (pointer)listp; |
MKLIST(listp,n0); |
| break; |
*rp = (pointer)listp; |
| case O_LIST: |
break; |
| fprintf(stderr,"solve,"); |
case O_LIST: |
| error(" : Sorry, not yet implement of multivars"); |
fprintf(stderr,"solve,"); |
| break; |
error(" : Sorry, not yet implement of multivars"); |
| default: |
break; |
| *rp = 0; |
default: |
| } |
*rp = 0; |
| |
} |
| } |
} |
| |
|
| void |
void |
|
|
| Q eps; |
Q eps; |
| pointer *rt; |
pointer *rt; |
| { |
{ |
| P p; |
P p; |
| Q up, low, a; |
Q up, low, a; |
| DCP fctp, onedeg, zerodeg; |
DCP fctp, onedeg, zerodeg; |
| LIST listp; |
LIST listp; |
| VECT sseq; |
VECT sseq; |
| MAT root; |
MAT root; |
| int chvu, chvl, pad, tnumb, numb, i, j; |
int chvu, chvl, pad, tnumb, numb, i, j; |
| Itv iv; |
Itv iv; |
| NODE n0, n, ln0, ln; |
NODE n0, n, ln0, ln; |
| |
|
| boundbody(inp, &up); |
boundbody(inp, &up); |
| if (!up) { |
if (!up) { |
| *rt = 0; |
*rt = 0; |
| return; |
return; |
| } |
} |
| Sturm(inp, &sseq); |
Sturm(inp, &sseq); |
| DUPQ(up,low); |
DUPQ(up,low); |
| SGN(low) = -1; |
SGN(low) = -1; |
| chvu = stumq(sseq, up); |
chvu = stumq(sseq, up); |
| chvl = stumq(sseq, low); |
chvl = stumq(sseq, low); |
| tnumb = abs(chvu - chvl); |
tnumb = abs(chvu - chvl); |
| MKMAT(root, tnumb, 4); |
MKMAT(root, tnumb, 4); |
| pad = -1; |
pad = -1; |
| |
|
| fctrp(CO,inp,&fctp); |
fctrp(CO,inp,&fctp); |
| for (fctp = NEXT(fctp), i = 0; fctp; fctp = NEXT(fctp)) { |
for (fctp = NEXT(fctp), i = 0; fctp; fctp = NEXT(fctp)) { |
| p = COEF(fctp); |
p = COEF(fctp); |
| onedeg = DC(p); |
onedeg = DC(p); |
| if ( !cmpq(DEG(onedeg), ONE) ) { |
if ( !cmpq(DEG(onedeg), ONE) ) { |
| pad++; |
pad++; |
| if ( !NEXT(onedeg) ) { |
if ( !NEXT(onedeg) ) { |
| BDY(root)[pad][0] = 0; |
BDY(root)[pad][0] = 0; |
| BDY(root)[pad][1] = 0; |
BDY(root)[pad][1] = 0; |
| BDY(root)[pad][2] = DEG(fctp); |
BDY(root)[pad][2] = DEG(fctp); |
| BDY(root)[pad][3] = p; |
BDY(root)[pad][3] = p; |
| } else { |
} else { |
| divq((Q)COEF(NEXT(onedeg)),(Q)COEF(onedeg),&a); |
divq((Q)COEF(NEXT(onedeg)),(Q)COEF(onedeg),&a); |
| BDY(root)[pad][0] = a; |
BDY(root)[pad][0] = a; |
| BDY(root)[pad][1] = BDY(root)[pad][0]; |
BDY(root)[pad][1] = BDY(root)[pad][0]; |
| BDY(root)[pad][2] = DEG(fctp); |
BDY(root)[pad][2] = DEG(fctp); |
| BDY(root)[pad][3] = p; |
BDY(root)[pad][3] = p; |
| } |
} |
| continue; |
continue; |
| } |
} |
| boundbody(p, &up); |
boundbody(p, &up); |
| Sturm(p, &sseq); |
Sturm(p, &sseq); |
| DUPQ(up,low); |
DUPQ(up,low); |
| SGN(low) = -1; |
SGN(low) = -1; |
| chvu = stumq(sseq, up); |
chvu = stumq(sseq, up); |
| chvl = stumq(sseq, low); |
chvl = stumq(sseq, low); |
| numb = abs(chvu - chvl); |
numb = abs(chvu - chvl); |
| separate(DEG(fctp), eps, sseq, up, low, chvu, chvl, root, &pad); |
separate(DEG(fctp), eps, sseq, up, low, chvu, chvl, root, &pad); |
| } |
} |
| for (i = 0; i < pad; i++) { |
for (i = 0; i < pad; i++) { |
| for (j = i; j <= pad; j++) { |
for (j = i; j <= pad; j++) { |
| if (cmpq(BDY(root)[i][0], BDY(root)[j][0]) > 0) { |
if (cmpq(BDY(root)[i][0], BDY(root)[j][0]) > 0) { |
| a = BDY(root)[i][0]; |
a = BDY(root)[i][0]; |
| BDY(root)[i][0] = BDY(root)[j][0]; |
BDY(root)[i][0] = BDY(root)[j][0]; |
| BDY(root)[j][0] = a; |
BDY(root)[j][0] = a; |
| a = BDY(root)[i][1]; |
a = BDY(root)[i][1]; |
| BDY(root)[i][1] = BDY(root)[j][1]; |
BDY(root)[i][1] = BDY(root)[j][1]; |
| BDY(root)[j][1] = a; |
BDY(root)[j][1] = a; |
| a = BDY(root)[i][2]; |
a = BDY(root)[i][2]; |
| BDY(root)[i][2] = BDY(root)[j][2]; |
BDY(root)[i][2] = BDY(root)[j][2]; |
| BDY(root)[j][2] = a; |
BDY(root)[j][2] = a; |
| a = BDY(root)[i][3]; |
a = BDY(root)[i][3]; |
| BDY(root)[i][3] = BDY(root)[j][3]; |
BDY(root)[i][3] = BDY(root)[j][3]; |
| BDY(root)[j][3] = a; |
BDY(root)[j][3] = a; |
| } |
} |
| } |
} |
| } |
} |
| for (i = 0; i < pad; i++) { |
for (i = 0; i < pad; i++) { |
| while(cmpq(BDY(root)[i][1], BDY(root)[i+1][0]) > 0 ) { |
while(cmpq(BDY(root)[i][1], BDY(root)[i+1][0]) > 0 ) { |
| binary(i, root); |
binary(i, root); |
| binary(i+1, root); |
binary(i+1, root); |
| if ( cmpq(BDY(root)[i][0], BDY(root)[i+1][1]) > 0 ) { |
if ( cmpq(BDY(root)[i][0], BDY(root)[i+1][1]) > 0 ) { |
| a = BDY(root)[i][0]; |
a = BDY(root)[i][0]; |
| BDY(root)[i][0] = BDY(root)[i+1][0]; |
BDY(root)[i][0] = BDY(root)[i+1][0]; |
| BDY(root)[i+1][0] = a; |
BDY(root)[i+1][0] = a; |
| a = BDY(root)[i][1]; |
a = BDY(root)[i][1]; |
| BDY(root)[i][1] = BDY(root)[i+1][1]; |
BDY(root)[i][1] = BDY(root)[i+1][1]; |
| BDY(root)[i+1][1] = a; |
BDY(root)[i+1][1] = a; |
| a = BDY(root)[i][2]; |
a = BDY(root)[i][2]; |
| BDY(root)[i][2] = BDY(root)[i+1][2]; |
BDY(root)[i][2] = BDY(root)[i+1][2]; |
| BDY(root)[i+1][2] = a; |
BDY(root)[i+1][2] = a; |
| a = BDY(root)[i][3]; |
a = BDY(root)[i][3]; |
| BDY(root)[i][3] = BDY(root)[i+1][3]; |
BDY(root)[i][3] = BDY(root)[i+1][3]; |
| BDY(root)[i+1][3] = a; |
BDY(root)[i+1][3] = a; |
| break; |
break; |
| } |
} |
| } |
} |
| } |
} |
| for (i = 0, n0 = 0; i <= pad; i++) { |
for (i = 0, n0 = 0; i <= pad; i++) { |
| istoitv(BDY(root)[i][0], BDY(root)[i][1], &iv); |
istoitv(BDY(root)[i][0], BDY(root)[i][1], &iv); |
| NEXTNODE(n0,n); |
NEXTNODE(n0,n); |
| MKNODE(ln, BDY(root)[i][2], 0); MKNODE(ln0, iv, ln); |
MKNODE(ln, BDY(root)[i][2], 0); MKNODE(ln0, iv, ln); |
| MKLIST(listp, ln0);BDY(n) = (pointer)listp; |
MKLIST(listp, ln0);BDY(n) = (pointer)listp; |
| } |
} |
| NEXT(n) = 0; |
NEXT(n) = 0; |
| MKLIST(listp,n0); |
MKLIST(listp,n0); |
| *rt = (pointer)listp; |
*rt = (pointer)listp; |
| } |
} |
| |
|
| void |
void |
| separate(mult, eps, sseq, up, low, upn, lown, root, padp) |
separate(mult, eps, sseq, up, low, upn, lown, root, padp) |
| VECT sseq; |
VECT sseq; |
| Q mult, eps, up, low; |
Q mult, eps, up, low; |
| int upn, lown; |
int upn, lown; |
| MAT root; |
MAT root; |
| int *padp; |
int *padp; |
| { |
{ |
| int de, midn; |
int de, midn; |
| Q mid, e; |
Q mid, e; |
| P p; |
P p; |
| |
|
| de = abs(lown - upn); |
de = abs(lown - upn); |
| if (de == 0) return; |
if (de == 0) return; |
| if (de == 1) { |
if (de == 1) { |
| (*padp)++; |
(*padp)++; |
| BDY(root)[*padp][0] = up; |
BDY(root)[*padp][0] = up; |
| BDY(root)[*padp][1] = low; |
BDY(root)[*padp][1] = low; |
| BDY(root)[*padp][3] = (P *)sseq->body[0]; |
BDY(root)[*padp][3] = (P *)sseq->body[0]; |
| subq( BDY(root)[*padp][1], BDY(root)[*padp][0], &e ); |
subq( BDY(root)[*padp][1], BDY(root)[*padp][0], &e ); |
| SGN(e) = 1; |
SGN(e) = 1; |
| while (cmpq(e, eps) > 0) { |
while (cmpq(e, eps) > 0) { |
| binary(*padp, root); |
binary(*padp, root); |
| subq( BDY(root)[*padp][1], BDY(root)[*padp][0], &e); |
subq( BDY(root)[*padp][1], BDY(root)[*padp][0], &e); |
| SGN(e) = 1; |
SGN(e) = 1; |
| } |
} |
| BDY(root)[*padp][2] = mult; |
BDY(root)[*padp][2] = mult; |
| return; |
return; |
| } |
} |
| addq(up, low, &mid); |
addq(up, low, &mid); |
| divq(mid, TWO, &mid); |
divq(mid, TWO, &mid); |
| midn = stumq(sseq, mid); |
midn = stumq(sseq, mid); |
| separate(mult, eps, sseq, low, mid, lown, midn, root, padp); |
separate(mult, eps, sseq, low, mid, lown, midn, root, padp); |
| separate(mult, eps, sseq, mid, up, midn, upn, root, padp); |
separate(mult, eps, sseq, mid, up, midn, upn, root, padp); |
| } |
} |
| |
|
| void |
void |
| Line 284 binary(indx, root) |
|
| Line 292 binary(indx, root) |
|
| int indx; |
int indx; |
| MAT root; |
MAT root; |
| { |
{ |
| Q a, b, c, d, e; |
Q a, b, c, d, e; |
| P p; |
P p; |
| p = (P)BDY(root)[indx][3]; |
p = (P)BDY(root)[indx][3]; |
| addq(BDY(root)[indx][0], BDY(root)[indx][1], &c); |
addq(BDY(root)[indx][0], BDY(root)[indx][1], &c); |
| divq(c, TWO, &d); |
divq(c, TWO, &d); |
| ueval(p, BDY(root)[indx][1], &a); |
ueval(p, BDY(root)[indx][1], &a); |
| ueval(p, d, &b); |
ueval(p, d, &b); |
| if (SGN(a) == SGN(b)){ |
if (SGN(a) == SGN(b)){ |
| BDY(root)[indx][1] = d; |
BDY(root)[indx][1] = d; |
| } else { |
} else { |
| BDY(root)[indx][0] = d; |
BDY(root)[indx][0] = d; |
| } |
} |
| } |
} |
| |
|
| void |
void |
|
|
| P p; |
P p; |
| VECT *ret; |
VECT *ret; |
| { |
{ |
| P g1,g2,q,r,s, *t; |
P g1,g2,q,r,s, *t; |
| Q a,b,c,d,h,l,m,x; |
Q a,b,c,d,h,l,m,x; |
| V v; |
V v; |
| VECT seq; |
VECT seq; |
| int i,j; |
int i,j; |
| |
|
| v = VR(p); |
v = VR(p); |
| t = (P *)ALLOCA((deg(v,p)+1)*sizeof(P)); |
t = (P *)ALLOCA((deg(v,p)+1)*sizeof(P)); |
| g1 = t[0] = p; diffp(CO,p,v,(P *)&a); ptozp((P)a,1,&c,&g2); t[1] = g2; |
g1 = t[0] = p; diffp(CO,p,v,(P *)&a); ptozp((P)a,1,&c,&g2); t[1] = g2; |
| for ( i = 1, h = ONE, x = ONE; ; ) { |
for ( i = 1, h = ONE, x = ONE; ; ) { |
| if ( NUM(g2) ) break; |
if ( NUM(g2) ) break; |
| subq(DEG(DC(g1)),DEG(DC(g2)),&d); |
subq(DEG(DC(g1)),DEG(DC(g2)),&d); |
| l = (Q)LC(g2); |
l = (Q)LC(g2); |
| if ( SGN(l) < 0 ) { |
if ( SGN(l) < 0 ) { |
| chsgnq(l,&a); l = a; |
chsgnq(l,&a); l = a; |
| } |
} |
| addq(d,ONE,&a); pwrq(l,a,&b); mulp(CO,(P)b,g1,(P *)&a); |
addq(d,ONE,&a); pwrq(l,a,&b); mulp(CO,(P)b,g1,(P *)&a); |
| divsrp(CO,(P)a,g2,&q,&r); |
divsrp(CO,(P)a,g2,&q,&r); |
| if ( !r ) break; |
if ( !r ) break; |
| chsgnp(r,&s); r = s; i++; |
chsgnp(r,&s); r = s; i++; |
| if ( NUM(r) ) { |
if ( NUM(r) ) { |
| t[i] = r; break; |
t[i] = r; break; |
| } |
} |
| pwrq(h,d,&m); g1 = g2; |
pwrq(h,d,&m); g1 = g2; |
| mulq(m,x,&a); divsp(CO,r,(P)a,&g2); t[i] = g2; |
mulq(m,x,&a); divsp(CO,r,(P)a,&g2); t[i] = g2; |
| x = (Q)LC(g1); |
x = (Q)LC(g1); |
| if ( SGN(x) < 0 ) { |
if ( SGN(x) < 0 ) { |
| chsgnq(x,&a); x = a; |
chsgnq(x,&a); x = a; |
| } |
} |
| pwrq(x,d,&a); mulq(a,h,&b); divq(b,m,&h); |
pwrq(x,d,&a); mulq(a,h,&b); divq(b,m,&h); |
| } |
} |
| MKVECT(seq,i+1); |
MKVECT(seq,i+1); |
| for ( j = 0; j <= i; j++ ) seq->body[j] = (pointer)t[j]; |
for ( j = 0; j <= i; j++ ) seq->body[j] = (pointer)t[j]; |
| *ret = seq; |
*ret = seq; |
| } |
} |
| |
|
| int |
int |
| stumq(s, val) |
stumq(VECT s, Q val) |
| VECT s; |
|
| Q val; |
|
| { |
{ |
| int len, i, j, c; |
int len, i, j, c; |
| P *ss; |
P *ss; |
| Q a, a0; |
Q a, a0; |
| |
|
| len = s->len; |
len = s->len; |
| ss = (P *)s->body; |
ss = (P *)s->body; |
| for ( j = 0; j < len; j++ ){ |
for ( j = 0; j < len; j++ ){ |
| ueval(ss[j],val,&a0); |
ueval(ss[j],val,&a0); |
| if (a0) break; |
if (a0) break; |
| } |
} |
| for ( i = j++, c =0; i < len; i++) { |
for ( i = j++, c =0; i < len; i++) { |
| ueval( ss[i], val, &a); |
ueval( ss[i], val, &a); |
| if ( a ) { |
if ( a ) { |
| if( (SGN(a) > 0 && SGN(a0) < 0) || (SGN(a) < 0 && SGN(a0) > 0) ){ |
if( (SGN(a) > 0 && SGN(a0) < 0) || (SGN(a) < 0 && SGN(a0) > 0) ){ |
| c++; |
c++; |
| a0 = a; |
a0 = a; |
| } |
} |
| } |
} |
| } |
} |
| return c; |
return c; |
| } |
} |
| |
|
| void |
void |
|
|
| P p; |
P p; |
| Q *q; |
Q *q; |
| { |
{ |
| Q t, max, tmp; |
Q t, max, tmp; |
| DCP dc; |
DCP dc; |
| |
|
| if ( !p ) |
if ( !p ) |
| *q = 0; |
*q = 0; |
| else if ( p->id == O_N ) |
else if ( p->id == O_N ) |
| *q = 0; |
*q = 0; |
| else { |
else { |
| NEWQ(tmp); |
NEWQ(tmp); |
| SGN(tmp)=1; |
SGN(tmp)=1; |
| for ( dc = DC(p), max=0; dc; dc = NEXT(dc) ) { |
for ( dc = DC(p), max=0; dc; dc = NEXT(dc) ) { |
| t = (Q)COEF(dc); |
t = (Q)COEF(dc); |
| NM(tmp)=NM(t); |
NM(tmp)=NM(t); |
| DN(tmp)=DN(t); |
DN(tmp)=DN(t); |
| if ( cmpq(tmp, max) > 0 ) DUPQ(tmp, max); |
if ( cmpq(tmp, max) > 0 ) DUPQ(tmp, max); |
| } |
} |
| addq(ONE, max, q); |
addq(ONE, max, q); |
| } |
} |
| } |
} |
| |
|
| void |
void |
|
|
| Q q; |
Q q; |
| Q *rp; |
Q *rp; |
| { |
{ |
| Q d, d1, a, b, t; |
Q d, d1, a, b, t; |
| Q deg, da; |
Q deg, da; |
| Q nm, dn; |
Q nm, dn; |
| DCP dc; |
DCP dc; |
| |
|
| if ( !p ) *rp = 0; |
if ( !p ) *rp = 0; |
| else if ( NUM(p) ) *rp = (Q)p; |
else if ( NUM(p) ) *rp = (Q)p; |
| else { |
else { |
| if ( q ) { |
if ( q ) { |
| NTOQ( DN(q), 1, dn ); |
NTOQ( DN(q), 1, dn ); |
| NTOQ( NM(q), SGN(q), nm ); |
NTOQ( NM(q), SGN(q), nm ); |
| } else { |
} else { |
| dn = 0; |
dn = 0; |
| nm = 0; |
nm = 0; |
| } |
} |
| if ( !dn ) { |
if ( !dn ) { |
| dc = DC(p); t = (Q)COEF(dc); |
dc = DC(p); t = (Q)COEF(dc); |
| for ( d = DEG(dc), dc = NEXT(dc); dc; d = DEG(dc), dc= NEXT(dc) ) { |
for ( d = DEG(dc), dc = NEXT(dc); dc; d = DEG(dc), dc= NEXT(dc) ) { |
| subq(d, DEG(dc), &d1); pwrq(nm, d1, &a); |
subq(d, DEG(dc), &d1); pwrq(nm, d1, &a); |
| mulq(t,a,&b); addq(b,(Q)COEF(dc),&t); |
mulq(t,a,&b); addq(b,(Q)COEF(dc),&t); |
| } |
} |
| if ( d ) { |
if ( d ) { |
| pwrq(nm,d,&a); mulq(t,a,&b); t = b; |
pwrq(nm,d,&a); mulq(t,a,&b); t = b; |
| } |
} |
| *rp = t; |
*rp = t; |
| } else { |
} else { |
| dc = DC(p); t = (Q)COEF(dc); |
dc = DC(p); t = (Q)COEF(dc); |
| for ( d=deg= DEG(dc), dc = NEXT(dc); dc; d = DEG(dc), dc= NEXT(dc) ) { |
for ( d=deg= DEG(dc), dc = NEXT(dc); dc; d = DEG(dc), dc= NEXT(dc) ) { |
| subq(d, DEG(dc), &d1); pwrq(nm, d1, &a); |
subq(d, DEG(dc), &d1); pwrq(nm, d1, &a); |
| mulq(t,a,&b); |
mulq(t,a,&b); |
| subq(deg, DEG(dc), &d1); pwrq(dn, d1, &a); |
subq(deg, DEG(dc), &d1); pwrq(dn, d1, &a); |
| mulq(a, (Q)COEF(dc), &da); |
mulq(a, (Q)COEF(dc), &da); |
| addq(b,da,&t); |
addq(b,da,&t); |
| } |
} |
| if ( d ) { |
if ( d ) { |
| pwrq(nm,d,&a); mulq(t,a,&b); t = b; |
pwrq(nm,d,&a); mulq(t,a,&b); t = b; |
| } |
} |
| *rp = t; |
*rp = t; |
| } |
} |
| } |
} |
| } |
} |
| #endif |
#endif |