Return to dp-supp.c CVS log | Up to [local] / OpenXM_contrib2 / asir2000 / builtin |
version 1.22, 2002/12/27 07:37:57 | version 1.35, 2004/05/14 06:02:54 | ||
---|---|---|---|
|
|
||
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, | * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, | ||
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. | * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. | ||
* | * | ||
* $OpenXM: OpenXM_contrib2/asir2000/builtin/dp-supp.c,v 1.21 2002/01/28 00:54:41 noro Exp $ | * $OpenXM: OpenXM_contrib2/asir2000/builtin/dp-supp.c,v 1.34 2004/04/22 07:52:38 noro Exp $ | ||
*/ | */ | ||
#include "ca.h" | #include "ca.h" | ||
#include "base.h" | #include "base.h" | ||
|
|
||
} | } | ||
} | } | ||
void head_coef(P p,Num *c) | |||
{ | |||
if ( !p ) | |||
*c = 0; | |||
else if ( NUM(p) ) | |||
*c = (Num)p; | |||
else | |||
head_coef(COEF(DC(p)),c); | |||
} | |||
void dp_monic_sf(DP p,DP *rp) | |||
{ | |||
Num c; | |||
if ( !p ) | |||
*rp = 0; | |||
else { | |||
head_coef(BDY(p)->c,&c); | |||
divsdc(CO,p,(P)c,rp); | |||
} | |||
} | |||
void dp_prim(DP p,DP *rp) | void dp_prim(DP p,DP *rp) | ||
{ | { | ||
P t,g; | P t,g; | ||
|
|
||
if ( !p ) | if ( !p ) | ||
*rp = 0; | *rp = 0; | ||
else if ( dp_fcoeffs ) { | else if ( dp_fcoeffs == N_GFS ) { | ||
for ( m = BDY(p); m; m = NEXT(m) ) { | for ( m = BDY(p); m; m = NEXT(m) ) | ||
if ( OID(m->c) == O_N ) { | if ( OID(m->c) == O_N ) { | ||
/* GCD of coeffs = 1 */ | /* GCD of coeffs = 1 */ | ||
*rp = p; | dp_monic_sf(p,rp); | ||
return; | return; | ||
} else if ( have_sf_coef(m->c) ) { | } else break; | ||
/* compute GCD over the finite fieid */ | /* compute GCD over the finite fieid */ | ||
for ( m = BDY(p), n = 0; m; m = NEXT(m), n++ ); | for ( m = BDY(p), n = 0; m; m = NEXT(m), n++ ); | ||
w = (P *)ALLOCA(n*sizeof(P)); | w = (P *)ALLOCA(n*sizeof(P)); | ||
for ( m = BDY(p), i = 0; i < n; m = NEXT(m), i++ ) | for ( m = BDY(p), i = 0; i < n; m = NEXT(m), i++ ) | ||
w[i] = m->c; | w[i] = m->c; | ||
gcdsf(CO,w,n,&g); | gcdsf(CO,w,n,&g); | ||
if ( NUM(g) ) | if ( NUM(g) ) | ||
*rp = p; | dp_monic_sf(p,rp); | ||
else { | else { | ||
for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) { | for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) { | ||
NEXTMP(mr0,mr); divsp(CO,m->c,g,&mr->c); mr->dl = m->dl; | NEXTMP(mr0,mr); divsp(CO,m->c,g,&mr->c); mr->dl = m->dl; | ||
} | |||
NEXT(mr) = 0; MKDP(p->nv,mr0,*rp); (*rp)->sugar = p->sugar; | |||
} | |||
return; | |||
} | } | ||
NEXT(mr) = 0; MKDP(p->nv,mr0,p1); p1->sugar = p->sugar; | |||
dp_monic_sf(p1,rp); | |||
} | } | ||
/* all coeffs are poly over Q */ | return; | ||
} else if ( dp_fcoeffs ) | |||
*rp = p; | *rp = p; | ||
} else if ( NoGCD ) | else if ( NoGCD ) | ||
dp_ptozp(p,rp); | dp_ptozp(p,rp); | ||
else { | else { | ||
dp_ptozp(p,&p1); p = p1; | dp_ptozp(p,&p1); p = p1; | ||
|
|
||
Q c,c1,c2; | Q c,c1,c2; | ||
N gn,tn; | N gn,tn; | ||
P g,a; | P g,a; | ||
P p[2]; | |||
n = p1->nv; d1 = BDY(p1)->dl; d2 = BDY(p2)->dl; | n = p1->nv; d1 = BDY(p1)->dl; d2 = BDY(p2)->dl; | ||
NEWDL(d,n); d->td = d1->td - d2->td; | NEWDL(d,n); d->td = d1->td - d2->td; | ||
for ( i = 0; i < n; i++ ) | for ( i = 0; i < n; i++ ) | ||
d->d[i] = d1->d[i]-d2->d[i]; | d->d[i] = d1->d[i]-d2->d[i]; | ||
c1 = (Q)BDY(p1)->c; c2 = (Q)BDY(p2)->c; | c1 = (Q)BDY(p1)->c; c2 = (Q)BDY(p2)->c; | ||
if ( dp_fcoeffs ) { | if ( dp_fcoeffs == N_GFS ) { | ||
p[0] = (P)c1; p[1] = (P)c2; | |||
gcdsf(CO,p,2,&g); | |||
divsp(CO,(P)c1,g,&a); c1 = (Q)a; divsp(CO,(P)c2,g,&a); c2 = (Q)a; | |||
} else if ( dp_fcoeffs ) { | |||
/* do nothing */ | /* do nothing */ | ||
} else if ( INT(c1) && INT(c2) ) { | } else if ( INT(c1) && INT(c2) ) { | ||
gcdn(NM(c1),NM(c2),&gn); | gcdn(NM(c1),NM(c2),&gn); | ||
|
|
||
*rp = s; | *rp = s; | ||
} | } | ||
void dp_nf_tab_f(DP p,LIST *tab,DP *rp) | |||
{ | |||
DP s,t,u; | |||
MP m; | |||
DL h; | |||
int i,n; | |||
if ( !p ) { | |||
*rp = p; return; | |||
} | |||
n = p->nv; | |||
for ( s = 0, i = 0, m = BDY(p); m; m = NEXT(m) ) { | |||
h = m->dl; | |||
while ( !dl_equal(n,h,BDY((DP)BDY(BDY(tab[i])))->dl ) ) | |||
i++; | |||
muldc(CO,(DP)BDY(NEXT(BDY(tab[i]))),m->c,&t); | |||
addd(CO,s,t,&u); s = u; | |||
} | |||
*rp = s; | |||
} | |||
/* | /* | ||
* setting flags | * setting flags | ||
* call create_order_spec with vl=0 to set old type order. | |||
* | * | ||
*/ | */ | ||
int create_order_spec(Obj obj,struct order_spec *spec) | int create_order_spec(VL vl,Obj obj,struct order_spec **specp) | ||
{ | { | ||
int i,j,n,s,row,col; | int i,j,n,s,row,col; | ||
struct order_spec *spec; | |||
struct order_pair *l; | struct order_pair *l; | ||
NODE node,t,tn; | NODE node,t,tn; | ||
MAT m; | MAT m; | ||
pointer **b; | pointer **b; | ||
int **w; | int **w; | ||
if ( vl && obj && OID(obj) == O_LIST ) | |||
return create_composite_order_spec(vl,(LIST)obj,specp); | |||
*specp = spec = (struct order_spec *)MALLOC(sizeof(struct order_spec)); | |||
if ( !obj || NUM(obj) ) { | if ( !obj || NUM(obj) ) { | ||
spec->id = 0; spec->obj = obj; | spec->id = 0; spec->obj = obj; | ||
spec->ord.simple = QTOS((Q)obj); | spec->ord.simple = QTOS((Q)obj); | ||
|
|
||
return 0; | return 0; | ||
} | } | ||
void print_composite_order_spec(struct order_spec *spec) | |||
{ | |||
int nv,n,len,i,j,k,start; | |||
struct weight_or_block *worb; | |||
nv = spec->nv; | |||
n = spec->ord.composite.length; | |||
worb = spec->ord.composite.w_or_b; | |||
for ( i = 0; i < n; i++, worb++ ) { | |||
len = worb->length; | |||
printf("[ "); | |||
switch ( worb->type ) { | |||
case IS_DENSE_WEIGHT: | |||
for ( j = 0; j < len; j++ ) | |||
printf("%d ",worb->body.dense_weight[j]); | |||
for ( ; j < nv; j++ ) | |||
printf("0 "); | |||
break; | |||
case IS_SPARSE_WEIGHT: | |||
for ( j = 0, k = 0; j < nv; j++ ) | |||
if ( j == worb->body.sparse_weight[k].pos ) | |||
printf("%d ",worb->body.sparse_weight[k++].value); | |||
else | |||
printf("0 "); | |||
break; | |||
case IS_BLOCK: | |||
start = worb->body.block.start; | |||
for ( j = 0; j < start; j++ ) printf("0 "); | |||
switch ( worb->body.block.order ) { | |||
case 0: | |||
for ( k = 0; k < len; k++, j++ ) printf("R "); | |||
break; | |||
case 1: | |||
for ( k = 0; k < len; k++, j++ ) printf("G "); | |||
break; | |||
case 2: | |||
for ( k = 0; k < len; k++, j++ ) printf("L "); | |||
break; | |||
} | |||
for ( ; j < nv; j++ ) printf("0 "); | |||
break; | |||
} | |||
printf("]\n"); | |||
} | |||
} | |||
/* order = [w_or_b, w_or_b, ... ] */ | |||
/* w_or_b = w or b */ | |||
/* w = [1,2,...] or [x,1,y,2,...] */ | |||
/* b = [@lex,x,y,...,z] etc */ | |||
int create_composite_order_spec(VL vl,LIST order,struct order_spec **specp) | |||
{ | |||
NODE wb,t,p; | |||
struct order_spec *spec; | |||
VL tvl; | |||
int n,i,j,k,l,start,end,len,w; | |||
int *dw; | |||
struct sparse_weight *sw; | |||
struct weight_or_block *w_or_b; | |||
Obj a0; | |||
NODE a; | |||
V v,sv,ev; | |||
SYMBOL sym; | |||
int *top; | |||
/* l = number of vars in vl */ | |||
for ( l = 0, tvl = vl; tvl; tvl = NEXT(tvl), l++ ); | |||
/* n = number of primitives in order */ | |||
wb = BDY(order); | |||
n = length(wb); | |||
*specp = spec = (struct order_spec *)MALLOC(sizeof(struct order_spec)); | |||
spec->id = 3; | |||
spec->obj = (Obj)order; | |||
spec->nv = l; | |||
spec->ord.composite.length = n; | |||
w_or_b = spec->ord.composite.w_or_b = (struct weight_or_block *) | |||
MALLOC(sizeof(struct weight_or_block)*(n+1)); | |||
/* top : register the top variable in each w_or_b specification */ | |||
top = (int *)ALLOCA(l*sizeof(int)); | |||
for ( i = 0; i < l; i++ ) top[i] = 0; | |||
for ( t = wb, i = 0; t; t = NEXT(t), i++ ) { | |||
if ( !BDY(t) || OID((Obj)BDY(t)) != O_LIST ) | |||
error("a list of lists must be specified for the key \"order\""); | |||
a = BDY((LIST)BDY(t)); | |||
len = length(a); | |||
a0 = (Obj)BDY(a); | |||
if ( !a0 || OID(a0) == O_N ) { | |||
/* a is a dense weight vector */ | |||
dw = (int *)MALLOC(sizeof(int)*len); | |||
for ( j = 0, p = a; j < len; p = NEXT(p), j++ ) { | |||
if ( !INT((Q)BDY(p)) ) | |||
error("a dense weight vector must be specified as a list of integers"); | |||
dw[j] = QTOS((Q)BDY(p)); | |||
} | |||
w_or_b[i].type = IS_DENSE_WEIGHT; | |||
w_or_b[i].length = len; | |||
w_or_b[i].body.dense_weight = dw; | |||
/* find the top */ | |||
for ( k = 0; k < len && !dw[k]; k++ ); | |||
if ( k < len ) top[k] = 1; | |||
} else if ( OID(a0) == O_P ) { | |||
/* a is a sparse weight vector */ | |||
len >>= 1; | |||
sw = (struct sparse_weight *) | |||
MALLOC(sizeof(struct sparse_weight)*len); | |||
for ( j = 0, p = a; j < len; j++ ) { | |||
if ( !BDY(p) || OID((P)BDY(p)) != O_P ) | |||
error("a sparse weight vector must be specified as [var1,weight1,...]"); | |||
v = VR((P)BDY(p)); p = NEXT(p); | |||
for ( tvl = vl, k = 0; tvl && tvl->v != v; | |||
k++, tvl = NEXT(tvl) ); | |||
if ( !tvl ) | |||
error("invalid variable name in a sparse weight vector"); | |||
sw[j].pos = k; | |||
if ( !INT((Q)BDY(p)) ) | |||
error("a sparse weight vector must be specified as [var1,weight1,...]"); | |||
sw[j].value = QTOS((Q)BDY(p)); p = NEXT(p); | |||
} | |||
w_or_b[i].type = IS_SPARSE_WEIGHT; | |||
w_or_b[i].length = len; | |||
w_or_b[i].body.sparse_weight = sw; | |||
/* find the top */ | |||
for ( k = 0; k < len && !sw[k].value; k++ ); | |||
if ( k < len ) top[sw[k].pos] = 1; | |||
} else if ( OID(a0) == O_RANGE ) { | |||
/* [range(v1,v2),w] */ | |||
sv = VR((P)(((RANGE)a0)->start)); | |||
ev = VR((P)(((RANGE)a0)->end)); | |||
for ( tvl = vl, start = 0; tvl && tvl->v != sv; start++, tvl = NEXT(tvl) ); | |||
if ( !tvl ) | |||
error("invalid range"); | |||
for ( end = start; tvl && tvl->v != ev; end++, tvl = NEXT(tvl) ); | |||
if ( !tvl ) | |||
error("invalid range"); | |||
len = end-start+1; | |||
sw = (struct sparse_weight *) | |||
MALLOC(sizeof(struct sparse_weight)*len); | |||
w = QTOS((Q)BDY(NEXT(a))); | |||
for ( tvl = vl, k = 0; k < start; k++, tvl = NEXT(tvl) ); | |||
for ( j = 0 ; k <= end; k++, tvl = NEXT(tvl), j++ ) { | |||
sw[j].pos = k; | |||
sw[j].value = w; | |||
} | |||
w_or_b[i].type = IS_SPARSE_WEIGHT; | |||
w_or_b[i].length = len; | |||
w_or_b[i].body.sparse_weight = sw; | |||
/* register the top */ | |||
if ( w ) top[start] = 1; | |||
} else if ( OID(a0) == O_SYMBOL ) { | |||
/* a is a block */ | |||
sym = (SYMBOL)a0; a = NEXT(a); len--; | |||
if ( OID((Obj)BDY(a)) == O_RANGE ) { | |||
sv = VR((P)(((RANGE)BDY(a))->start)); | |||
ev = VR((P)(((RANGE)BDY(a))->end)); | |||
for ( tvl = vl, start = 0; tvl && tvl->v != sv; start++, tvl = NEXT(tvl) ); | |||
if ( !tvl ) | |||
error("invalid range"); | |||
for ( end = start; tvl && tvl->v != ev; end++, tvl = NEXT(tvl) ); | |||
if ( !tvl ) | |||
error("invalid range"); | |||
len = end-start+1; | |||
} else { | |||
for ( start = 0, tvl = vl; tvl->v != VR((P)BDY(a)); | |||
tvl = NEXT(tvl), start++ ); | |||
for ( p = NEXT(a), tvl = NEXT(tvl); p; | |||
p = NEXT(p), tvl = NEXT(tvl) ) { | |||
if ( !BDY(p) || OID((P)BDY(p)) != O_P ) | |||
error("a block must be specified as [ordsymbol,var1,var2,...]"); | |||
if ( tvl->v != VR((P)BDY(p)) ) break; | |||
} | |||
if ( p ) | |||
error("a block must be contiguous in the variable list"); | |||
} | |||
w_or_b[i].type = IS_BLOCK; | |||
w_or_b[i].length = len; | |||
w_or_b[i].body.block.start = start; | |||
if ( !strcmp(sym->name,"@grlex") ) | |||
w_or_b[i].body.block.order = 0; | |||
else if ( !strcmp(sym->name,"@glex") ) | |||
w_or_b[i].body.block.order = 1; | |||
else if ( !strcmp(sym->name,"@lex") ) | |||
w_or_b[i].body.block.order = 2; | |||
else | |||
error("invalid ordername"); | |||
/* register the tops */ | |||
for ( j = 0, k = start; j < len; j++, k++ ) | |||
top[k] = 1; | |||
} | |||
} | |||
for ( k = 0; k < l && top[k]; k++ ); | |||
if ( k < l ) { | |||
/* incomplete order specification; add @grlex */ | |||
w_or_b[n].type = IS_BLOCK; | |||
w_or_b[n].length = l; | |||
w_or_b[n].body.block.start = 0; | |||
w_or_b[n].body.block.order = 0; | |||
spec->ord.composite.length = n+1; | |||
} | |||
if ( 1 ) print_composite_order_spec(spec); | |||
} | |||
/* module order spec */ | |||
void create_modorder_spec(int id,LIST shift,struct modorder_spec **s) | |||
{ | |||
struct modorder_spec *spec; | |||
NODE n,t; | |||
LIST list; | |||
int *ds; | |||
int i,l; | |||
Q q; | |||
*s = spec = (struct modorder_spec *)MALLOC(sizeof(struct modorder_spec)); | |||
spec->id = id; | |||
if ( shift ) { | |||
n = BDY(shift); | |||
spec->len = l = length(n); | |||
spec->degree_shift = ds = (int *)MALLOC_ATOMIC(l*sizeof(int)); | |||
for ( t = n, i = 0; t; t = NEXT(t), i++ ) | |||
ds[i] = QTOS((Q)BDY(t)); | |||
} else { | |||
spec->len = 0; | |||
spec->degree_shift = 0; | |||
} | |||
STOQ(id,q); | |||
n = mknode(2,q,shift); | |||
MKLIST(list,n); | |||
spec->obj = (Obj)list; | |||
} | |||
/* | /* | ||
* converters | * converters | ||
* | * | ||
|
|
||
} | } | ||
void homogenize_order(struct order_spec *old,int n,struct order_spec *new) | void homogenize_order(struct order_spec *old,int n,struct order_spec **newp) | ||
{ | { | ||
struct order_pair *l; | struct order_pair *l; | ||
int length,nv,row,i,j; | int length,nv,row,i,j; | ||
int **newm,**oldm; | int **newm,**oldm; | ||
struct order_spec *new; | |||
int onv,nnv,nlen,olen,owlen; | |||
struct weight_or_block *owb,*nwb; | |||
*newp = new = (struct order_spec *)MALLOC(sizeof(struct order_spec)); | |||
switch ( old->id ) { | switch ( old->id ) { | ||
case 0: | case 0: | ||
switch ( old->ord.simple ) { | switch ( old->ord.simple ) { | ||
|
|
||
new->id = 2; new->nv = nv+1; | new->id = 2; new->nv = nv+1; | ||
new->ord.matrix.row = row+1; new->ord.matrix.matrix = newm; | new->ord.matrix.row = row+1; new->ord.matrix.matrix = newm; | ||
break; | break; | ||
case 3: | |||
onv = old->nv; | |||
nnv = onv+1; | |||
olen = old->ord.composite.length; | |||
nlen = olen+1; | |||
owb = old->ord.composite.w_or_b; | |||
nwb = (struct weight_or_block *) | |||
MALLOC(nlen*sizeof(struct weight_or_block)); | |||
for ( i = 0; i < olen; i++ ) { | |||
nwb[i].type = owb[i].type; | |||
switch ( owb[i].type ) { | |||
case IS_DENSE_WEIGHT: | |||
owlen = owb[i].length; | |||
nwb[i].length = owlen+1; | |||
nwb[i].body.dense_weight = (int *)MALLOC((owlen+1)*sizeof(int)); | |||
for ( j = 0; j < owlen; j++ ) | |||
nwb[i].body.dense_weight[j] = owb[i].body.dense_weight[j]; | |||
nwb[i].body.dense_weight[owlen] = 0; | |||
break; | |||
case IS_SPARSE_WEIGHT: | |||
nwb[i].length = owb[i].length; | |||
nwb[i].body.sparse_weight = owb[i].body.sparse_weight; | |||
break; | |||
case IS_BLOCK: | |||
nwb[i].length = owb[i].length; | |||
nwb[i].body.block = owb[i].body.block; | |||
break; | |||
} | |||
} | |||
nwb[i].type = IS_SPARSE_WEIGHT; | |||
nwb[i].body.sparse_weight = | |||
(struct sparse_weight *)MALLOC(sizeof(struct sparse_weight)); | |||
nwb[i].body.sparse_weight[0].pos = onv; | |||
nwb[i].body.sparse_weight[0].value = 1; | |||
new->id = 3; | |||
new->nv = nnv; | |||
new->ord.composite.length = nlen; | |||
new->ord.composite.w_or_b = nwb; | |||
print_composite_order_spec(new); | |||
break; | |||
default: | default: | ||
error("homogenize_order : invalid input"); | error("homogenize_order : invalid input"); | ||
} | } | ||
|
|
||
} | } | ||
} | } | ||
void dp_ht(DP p,DP *rp) | |||
{ | |||
MP m,mr; | |||
if ( !p ) | |||
*rp = 0; | |||
else { | |||
m = BDY(p); | |||
NEWMP(mr); mr->dl = m->dl; mr->c = (P)ONE; NEXT(mr) = 0; | |||
MKDP(p->nv,mr,*rp); (*rp)->sugar = mr->dl->td; /* XXX */ | |||
} | |||
} | |||
void dp_rest(DP p,DP *rp) | void dp_rest(DP p,DP *rp) | ||
{ | { | ||
MP m; | MP m; | ||
|
|
||
fprintf(stderr,">",C(m)); | fprintf(stderr,">",C(m)); | ||
} | } | ||
fprintf(stderr,"\n"); | fprintf(stderr,"\n"); | ||
} | |||
static int cmp_mp_nvar; | |||
int comp_mp(MP *a,MP *b) | |||
{ | |||
return -(*cmpdl)(cmp_mp_nvar,(*a)->dl,(*b)->dl); | |||
} | |||
void dp_sort(DP p,DP *rp) | |||
{ | |||
MP t,mp,mp0; | |||
int i,n; | |||
DP r; | |||
MP *w; | |||
if ( !p ) { | |||
*rp = 0; | |||
return; | |||
} | |||
for ( t = BDY(p), n = 0; t; t = NEXT(t), n++ ); | |||
w = (MP *)ALLOCA(n*sizeof(MP)); | |||
for ( t = BDY(p), i = 0; i < n; t = NEXT(t), i++ ) | |||
w[i] = t; | |||
cmp_mp_nvar = NV(p); | |||
qsort(w,n,sizeof(MP),(int (*)(const void *,const void *))comp_mp); | |||
mp0 = 0; | |||
for ( i = n-1; i >= 0; i-- ) { | |||
NEWMP(mp); mp->dl = w[i]->dl; C(mp) = C(w[i]); | |||
NEXT(mp) = mp0; mp0 = mp; | |||
} | |||
MKDP(p->nv,mp0,r); | |||
r->sugar = p->sugar; | |||
*rp = r; | |||
} | |||
DP extract_initial_term_from_dp(DP p,int *weight,int n); | |||
LIST extract_initial_term(LIST f,int *weight,int n); | |||
DP extract_initial_term_from_dp(DP p,int *weight,int n) | |||
{ | |||
int w,t,i,top; | |||
MP m,r0,r; | |||
DP dp; | |||
if ( !p ) return 0; | |||
top = 1; | |||
for ( m = BDY(p); m; m = NEXT(m) ) { | |||
for ( i = 0, t = 0; i < n; i++ ) | |||
t += weight[i]*m->dl->d[i]; | |||
if ( top || t > w ) { | |||
r0 = 0; | |||
w = t; | |||
top = 0; | |||
} | |||
if ( t == w ) { | |||
NEXTMP(r0,r); | |||
r->dl = m->dl; | |||
r->c = m->c; | |||
} | |||
} | |||
NEXT(r) = 0; | |||
MKDP(p->nv,r0,dp); | |||
return dp; | |||
} | |||
LIST extract_initial_term(LIST f,int *weight,int n) | |||
{ | |||
NODE nd,r0,r; | |||
Obj p; | |||
LIST l; | |||
nd = BDY(f); | |||
for ( r0 = 0; nd; nd = NEXT(nd) ) { | |||
NEXTNODE(r0,r); | |||
p = (Obj)BDY(nd); | |||
BDY(r) = (pointer)extract_initial_term_from_dp((DP)p,weight,n); | |||
} | |||
if ( r0 ) NEXT(r) = 0; | |||
MKLIST(l,r0); | |||
return l; | |||
} | |||
LIST dp_initial_term(LIST f,struct order_spec *ord) | |||
{ | |||
int n,l,i; | |||
struct weight_or_block *worb; | |||
int *weight; | |||
switch ( ord->id ) { | |||
case 2: /* matrix order */ | |||
/* extract the first row */ | |||
n = ord->nv; | |||
weight = ord->ord.matrix.matrix[0]; | |||
return extract_initial_term(f,weight,n); | |||
case 3: /* composite order */ | |||
/* the first w_or_b */ | |||
worb = ord->ord.composite.w_or_b; | |||
switch ( worb->type ) { | |||
case IS_DENSE_WEIGHT: | |||
n = worb->length; | |||
weight = worb->body.dense_weight; | |||
return extract_initial_term(f,weight,n); | |||
case IS_SPARSE_WEIGHT: | |||
n = ord->nv; | |||
weight = (int *)ALLOCA(n*sizeof(int)); | |||
for ( i = 0; i < n; i++ ) weight[i] = 0; | |||
l = worb->length; | |||
for ( i = 0; i < l; i++ ) | |||
weight[worb->body.sparse_weight[i].pos] | |||
= worb->body.sparse_weight[i].value; | |||
return extract_initial_term(f,weight,n); | |||
default: | |||
error("dp_initial_term : unsupported order"); | |||
} | |||
default: | |||
error("dp_initial_term : unsupported order"); | |||
} | |||
} | |||
int highest_order_dp(DP p,int *weight,int n); | |||
LIST highest_order(LIST f,int *weight,int n); | |||
int highest_order_dp(DP p,int *weight,int n) | |||
{ | |||
int w,t,i,top; | |||
MP m; | |||
if ( !p ) return -1; | |||
top = 1; | |||
for ( m = BDY(p); m; m = NEXT(m) ) { | |||
for ( i = 0, t = 0; i < n; i++ ) | |||
t += weight[i]*m->dl->d[i]; | |||
if ( top || t > w ) { | |||
w = t; | |||
top = 0; | |||
} | |||
} | |||
return w; | |||
} | |||
LIST highest_order(LIST f,int *weight,int n) | |||
{ | |||
int h; | |||
NODE nd,r0,r; | |||
Obj p; | |||
LIST l; | |||
Q q; | |||
nd = BDY(f); | |||
for ( r0 = 0; nd; nd = NEXT(nd) ) { | |||
NEXTNODE(r0,r); | |||
p = (Obj)BDY(nd); | |||
h = highest_order_dp((DP)p,weight,n); | |||
STOQ(h,q); | |||
BDY(r) = (pointer)q; | |||
} | |||
if ( r0 ) NEXT(r) = 0; | |||
MKLIST(l,r0); | |||
return l; | |||
} | |||
LIST dp_order(LIST f,struct order_spec *ord) | |||
{ | |||
int n,l,i; | |||
struct weight_or_block *worb; | |||
int *weight; | |||
switch ( ord->id ) { | |||
case 2: /* matrix order */ | |||
/* extract the first row */ | |||
n = ord->nv; | |||
weight = ord->ord.matrix.matrix[0]; | |||
return highest_order(f,weight,n); | |||
case 3: /* composite order */ | |||
/* the first w_or_b */ | |||
worb = ord->ord.composite.w_or_b; | |||
switch ( worb->type ) { | |||
case IS_DENSE_WEIGHT: | |||
n = worb->length; | |||
weight = worb->body.dense_weight; | |||
return highest_order(f,weight,n); | |||
case IS_SPARSE_WEIGHT: | |||
n = ord->nv; | |||
weight = (int *)ALLOCA(n*sizeof(int)); | |||
for ( i = 0; i < n; i++ ) weight[i] = 0; | |||
l = worb->length; | |||
for ( i = 0; i < l; i++ ) | |||
weight[worb->body.sparse_weight[i].pos] | |||
= worb->body.sparse_weight[i].value; | |||
return highest_order(f,weight,n); | |||
default: | |||
error("dp_initial_term : unsupported order"); | |||
} | |||
default: | |||
error("dp_initial_term : unsupported order"); | |||
} | |||
} | |||
int dpv_ht(DPV p,DP *h) | |||
{ | |||
int len,max,maxi,i,t; | |||
DP *e; | |||
MP m,mr; | |||
len = p->len; | |||
e = p->body; | |||
max = -1; | |||
maxi = -1; | |||
for ( i = 0; i < len; i++ ) | |||
if ( e[i] && (t = BDY(e[i])->dl->td) > max ) { | |||
max = t; | |||
maxi = i; | |||
} | |||
if ( max < 0 ) { | |||
*h = 0; | |||
return -1; | |||
} else { | |||
m = BDY(e[maxi]); | |||
NEWMP(mr); mr->dl = m->dl; mr->c = (P)ONE; NEXT(mr) = 0; | |||
MKDP(e[maxi]->nv,mr,*h); (*h)->sugar = mr->dl->td; /* XXX */ | |||
return maxi; | |||
} | |||
} | } |