===================================================================
RCS file: /home/cvs/OpenXM_contrib2/asir2000/builtin/array.c,v
retrieving revision 1.1.1.1
retrieving revision 1.20
diff -u -p -r1.1.1.1 -r1.20
--- OpenXM_contrib2/asir2000/builtin/array.c 1999/12/03 07:39:07 1.1.1.1
+++ OpenXM_contrib2/asir2000/builtin/array.c 2001/09/17 03:33:57 1.20
@@ -1,27 +1,80 @@
-/* $OpenXM: OpenXM/src/asir99/builtin/array.c,v 1.2 1999/11/23 07:14:14 noro Exp $ */
+/*
+ * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
+ * All rights reserved.
+ *
+ * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
+ * non-exclusive and royalty-free license to use, copy, modify and
+ * redistribute, solely for non-commercial and non-profit purposes, the
+ * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
+ * conditions of this Agreement. For the avoidance of doubt, you acquire
+ * only a limited right to use the SOFTWARE hereunder, and FLL or any
+ * third party developer retains all rights, including but not limited to
+ * copyrights, in and to the SOFTWARE.
+ *
+ * (1) FLL does not grant you a license in any way for commercial
+ * purposes. You may use the SOFTWARE only for non-commercial and
+ * non-profit purposes only, such as academic, research and internal
+ * business use.
+ * (2) The SOFTWARE is protected by the Copyright Law of Japan and
+ * international copyright treaties. If you make copies of the SOFTWARE,
+ * with or without modification, as permitted hereunder, you shall affix
+ * to all such copies of the SOFTWARE the above copyright notice.
+ * (3) An explicit reference to this SOFTWARE and its copyright owner
+ * shall be made on your publication or presentation in any form of the
+ * results obtained by use of the SOFTWARE.
+ * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
+ * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
+ * for such modification or the source code of the modified part of the
+ * SOFTWARE.
+ *
+ * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
+ * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
+ * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
+ * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
+ * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
+ * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
+ * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
+ * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
+ * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
+ * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
+ * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
+ * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
+ * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
+ * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
+ * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
+ * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
+ *
+ * $OpenXM: OpenXM_contrib2/asir2000/builtin/array.c,v 1.19 2001/09/17 02:47:07 noro Exp $
+*/
#include "ca.h"
#include "base.h"
#include "parse.h"
#include "inline.h"
-/*
+
+#if 0
#undef DMAR
#define DMAR(a1,a2,a3,d,r) (r)=dmar(a1,a2,a3,d);
-*/
+#endif
-extern int Print; /* XXX */
+extern int DP_Print; /* XXX */
+void inner_product_mat_int_mod(Q **,int **,int,int,int,Q *);
+void solve_by_lu_mod(int **,int,int,int **,int);
void solve_by_lu_gfmmat(GFMMAT,unsigned int,unsigned int *,unsigned int *);
int lu_gfmmat(GFMMAT,unsigned int,int *);
void mat_to_gfmmat(MAT,unsigned int,GFMMAT *);
int generic_gauss_elim_mod(int **,int,int,int,int *);
int generic_gauss_elim(MAT ,MAT *,Q *,int **,int **);
+void reduce_sp_by_red_mod_compress (int *,CDP *,int *,int,int,int);
int gauss_elim_mod(int **,int,int,int);
int gauss_elim_mod1(int **,int,int,int);
int gauss_elim_geninv_mod(unsigned int **,int,int,int);
int gauss_elim_geninv_mod_swap(unsigned int **,int,int,unsigned int,unsigned int ***,int **);
void Pnewvect(), Pnewmat(), Psepvect(), Psize(), Pdet(), Pleqm(), Pleqm1(), Pgeninvm();
+void Pnewbytearray();
void Pgeneric_gauss_elim_mod();
@@ -38,6 +91,7 @@ void Px962_irredpoly_up2();
void Pirredpoly_up2();
void Pnbpoly_up2();
void Pqsort();
+void Pexponent_vector();
struct ftab array_tab[] = {
{"solve_by_lu_gfmmat",Psolve_by_lu_gfmmat,4},
@@ -45,7 +99,11 @@ struct ftab array_tab[] = {
{"mat_to_gfmmat",Pmat_to_gfmmat,2},
{"generic_gauss_elim_mod",Pgeneric_gauss_elim_mod,2},
{"newvect",Pnewvect,-2},
+ {"vector",Pnewvect,-2},
+ {"exponent_vector",Pexponent_vector,-99999999},
{"newmat",Pnewmat,-3},
+ {"matrix",Pnewmat,-3},
+ {"newbytearray",Pnewbytearray,-2},
{"sepmat_destructive",Psepmat_destructive,2},
{"sepvect",Psepvect,2},
{"qsort",Pqsort,-2},
@@ -306,7 +364,7 @@ VECT *rp;
asir_assert(ARG0(arg),O_N,"newvect");
len = QTOS((Q)ARG0(arg));
- if ( len <= 0 )
+ if ( len < 0 )
error("newvect : invalid size");
MKVECT(vect,len);
if ( argc(arg) == 2 ) {
@@ -323,6 +381,57 @@ VECT *rp;
*rp = vect;
}
+void Pexponent_vector(arg,rp)
+NODE arg;
+DP *rp;
+{
+ nodetod(arg,rp);
+}
+
+void Pnewbytearray(arg,rp)
+NODE arg;
+BYTEARRAY *rp;
+{
+ int len,i,r;
+ BYTEARRAY array;
+ unsigned char *vb;
+ char *str;
+ LIST list;
+ NODE tn;
+
+ asir_assert(ARG0(arg),O_N,"newbytearray");
+ len = QTOS((Q)ARG0(arg));
+ if ( len < 0 )
+ error("newbytearray : invalid size");
+ MKBYTEARRAY(array,len);
+ if ( argc(arg) == 2 ) {
+ if ( !ARG1(arg) )
+ error("newbytearray : invalid initialization");
+ switch ( OID((Obj)ARG1(arg)) ) {
+ case O_LIST:
+ list = (LIST)ARG1(arg);
+ asir_assert(list,O_LIST,"newbytearray");
+ for ( r = 0, tn = BDY(list); tn; r++, tn = NEXT(tn) );
+ if ( r <= len ) {
+ for ( i = 0, tn = BDY(list), vb = BDY(array); tn;
+ i++, tn = NEXT(tn) )
+ vb[i] = (unsigned char)QTOS((Q)BDY(tn));
+ }
+ break;
+ case O_STR:
+ str = BDY((STRING)ARG1(arg));
+ r = strlen(str);
+ if ( r <= len )
+ bcopy(str,BDY(array),r);
+ break;
+ default:
+ if ( !ARG1(arg) )
+ error("newbytearray : invalid initialization");
+ }
+ }
+ *rp = array;
+}
+
void Pnewmat(arg,rp)
NODE arg;
MAT *rp;
@@ -337,7 +446,7 @@ MAT *rp;
asir_assert(ARG0(arg),O_N,"newmat");
asir_assert(ARG1(arg),O_N,"newmat");
row = QTOS((Q)ARG0(arg)); col = QTOS((Q)ARG1(arg));
- if ( row <= 0 || col <= 0 )
+ if ( row < 0 || col < 0 )
error("newmat : invalid size");
MKMAT(m,row,col);
if ( argc(arg) == 3 ) {
@@ -661,8 +770,10 @@ int row,col,md;
t = mat[i];
if ( i != j && (a = t[j]) )
for ( k = j, a = md - a; k <= n; k++ ) {
+ unsigned int tk;
/* t[k] = dmar(pivot[k],a,t[k],md); */
- DMAR(pivot[k],a,t[k],md,t[k])
+ DMAR(pivot[k],a,t[k],md,tk)
+ t[k] = tk;
}
}
}
@@ -673,7 +784,7 @@ int row,col,md;
return -1;
}
-struct oEGT eg_mod,eg_elim,eg_chrem,eg_gschk,eg_intrat,eg_symb;
+struct oEGT eg_mod,eg_elim,eg_elim1,eg_elim2,eg_chrem,eg_gschk,eg_intrat,eg_symb;
int generic_gauss_elim(mat,nm,dn,rindp,cindp)
MAT mat;
@@ -706,9 +817,10 @@ int **rindp,**cindp;
colstat = (int *)MALLOC_ATOMIC(col*sizeof(int));
wcolstat = (int *)MALLOC_ATOMIC(col*sizeof(int));
for ( ind = 0; ; ind++ ) {
- if ( Print )
- fprintf(asir_out,".");
- md = lprime[ind];
+ if ( DP_Print ) {
+ fprintf(asir_out,"."); fflush(asir_out);
+ }
+ md = get_lprime(ind);
get_eg(&tmp0);
for ( i = 0; i < row; i++ )
for ( j = 0, bmi = bmat[i], wmi = wmat[i]; j < col; j++ )
@@ -742,18 +854,24 @@ RESET:
}
} else {
if ( rank < rank0 ) {
- if ( Print )
+ if ( DP_Print ) {
fprintf(asir_out,"lower rank matrix; continuing...\n");
+ fflush(asir_out);
+ }
continue;
} else if ( rank > rank0 ) {
- if ( Print )
+ if ( DP_Print ) {
fprintf(asir_out,"higher rank matrix; resetting...\n");
+ fflush(asir_out);
+ }
goto RESET;
} else {
for ( j = 0; (j
body;
+ row = mat->row; col = mat->col;
+ w = (int **)almat(row,col);
+ for ( ind = 0; ; ind++ ) {
+ md = get_lprime(ind);
+ STOQ(md,mdq);
+ for ( i = 0; i < row; i++ )
+ for ( j = 0, ai = a0[i], wi = w[i]; j < col; j++ )
+ if ( q = (Q)ai[j] ) {
+ t = rem(NM(q),md);
+ if ( t && SGN(q) < 0 )
+ t = (md - t) % md;
+ wi[j] = t;
+ } else
+ wi[j] = 0;
+
+ rank = find_lhs_and_lu_mod(w,row,col,md,&rinfo,&cinfo);
+ a = (Q **)almat_pointer(rank,rank); /* lhs mat */
+ MKMAT(bmat,rank,col-rank); b = (Q **)bmat->body; /* lhs mat */
+ for ( j = li = ri = 0; j < col; j++ )
+ if ( cinfo[j] ) {
+ /* the column is in lhs */
+ for ( i = 0; i < rank; i++ ) {
+ w[i][li] = w[i][j];
+ a[i][li] = a0[rinfo[i]][j];
+ }
+ li++;
+ } else {
+ /* the column is in rhs */
+ for ( i = 0; i < rank; i++ )
+ b[i][ri] = a0[rinfo[i]][j];
+ ri++;
+ }
+
+ /* solve Ax+B=0; A: rank x rank, B: rank x ri */
+ MKMAT(xmat,rank,ri); x = (Q **)(xmat)->body;
+ MKMAT(*nmmat,rank,ri); nm = (Q **)(*nmmat)->body;
+ /* use the right part of w as work area */
+ /* ri = col - rank */
+ wc = (int **)almat(rank,ri);
+ for ( i = 0; i < rank; i++ )
+ wc[i] = w[i]+rank;
+ *rindp = rind = (int *)MALLOC_ATOMIC(rank*sizeof(int));
+ *cindp = cind = (int *)MALLOC_ATOMIC((ri)*sizeof(int));
+
+ init_eg(&eg_mul); init_eg(&eg_inv);
+ for ( q = ONE, count = 0; ; count++ ) {
+ fprintf(stderr,".");
+ /* wc = -b mod md */
+ for ( i = 0; i < rank; i++ )
+ for ( j = 0, bi = b[i], wi = wc[i]; j < ri; j++ )
+ if ( u = (Q)bi[j] ) {
+ t = rem(NM(u),md);
+ if ( t && SGN(u) > 0 )
+ t = (md - t) % md;
+ wi[j] = t;
+ } else
+ wi[j] = 0;
+ /* wc = A^(-1)wc; wc is normalized */
+ get_eg(&tmp0);
+ solve_by_lu_mod(w,rank,md,wc,ri);
+ get_eg(&tmp1);
+ add_eg(&eg_inv,&tmp0,&tmp1);
+ /* x = x-q*wc */
+ for ( i = 0; i < rank; i++ )
+ for ( j = 0, xi = x[i], wi = wc[i]; j < ri; j++ ) {
+ STOQ(wi[j],u); mulq(q,u,&s);
+ subq(xi[j],s,&u); xi[j] = u;
+ }
+ get_eg(&tmp0);
+ for ( i = 0; i < rank; i++ )
+ for ( j = 0; j < ri; j++ ) {
+ inner_product_mat_int_mod(a,wc,rank,i,j,&u);
+ addq(b[i][j],u,&s);
+ if ( s ) {
+ t = divin(NM(s),md,&tn);
+ if ( t )
+ error("generic_gauss_elim_hensel:incosistent");
+ NTOQ(tn,SGN(s),b[i][j]);
+ } else
+ b[i][j] = 0;
+ }
+ get_eg(&tmp1);
+ add_eg(&eg_mul,&tmp0,&tmp1);
+ /* q = q*md */
+ mulq(q,mdq,&u); q = u;
+ if ( !(count % 16) && intmtoratm_q(xmat,NM(q),*nmmat,dn) ) {
+ for ( j = k = l = 0; j < col; j++ )
+ if ( cinfo[j] )
+ rind[k++] = j;
+ else
+ cind[l++] = j;
+ if ( gensolve_check(mat,*nmmat,*dn,rind,cind) ) {
+ fprintf(stderr,"\n");
+ print_eg("INV",&eg_inv);
+ print_eg("MUL",&eg_mul);
+ fflush(asir_out);
+ return rank;
+ }
+ }
+ }
+ }
+}
+
int f4_nocheck;
int gensolve_check(mat,nm,dn,rind,cind)
@@ -914,6 +1162,8 @@ Q *dn;
N u,unm,udn;
int sgn,ret;
+ if ( UNIN(md) )
+ return 0;
row = mat->row; col = mat->col;
bshiftn(md,1,&t);
isqrt(t,&s);
@@ -951,16 +1201,337 @@ Q *dn;
return 1;
}
-int generic_gauss_elim_mod(mat,row,col,md,colstat)
+/* mat->body = Q ** */
+
+int intmtoratm_q(mat,md,nm,dn)
+MAT mat;
+N md;
+MAT nm;
+Q *dn;
+{
+ N t,s,b;
+ Q bound,dn0,dn1,nm1,q,tq;
+ int i,j,k,l,row,col;
+ Q **rmat;
+ Q **tmat;
+ Q *tmi;
+ Q *nmk;
+ N u,unm,udn;
+ int sgn,ret;
+
+ if ( UNIN(md) )
+ return 0;
+ row = mat->row; col = mat->col;
+ bshiftn(md,1,&t);
+ isqrt(t,&s);
+ bshiftn(s,64,&b);
+ if ( !b )
+ b = ONEN;
+ dn0 = ONE;
+ tmat = (Q **)mat->body;
+ rmat = (Q **)nm->body;
+ for ( i = 0; i < row; i++ )
+ for ( j = 0, tmi = tmat[i]; j < col; j++ )
+ if ( tmi[j] ) {
+ muln(NM(tmi[j]),NM(dn0),&s);
+ remn(s,md,&u);
+ ret = inttorat(u,md,b,&sgn,&unm,&udn);
+ if ( !ret )
+ return 0;
+ else {
+ if ( SGN(tmi[j])<0 )
+ sgn = -sgn;
+ NTOQ(unm,sgn,nm1);
+ NTOQ(udn,1,dn1);
+ if ( !UNIQ(dn1) ) {
+ for ( k = 0; k < i; k++ )
+ for ( l = 0, nmk = rmat[k]; l < col; l++ ) {
+ mulq(nmk[l],dn1,&q); nmk[l] = q;
+ }
+ for ( l = 0, nmk = rmat[i]; l < j; l++ ) {
+ mulq(nmk[l],dn1,&q); nmk[l] = q;
+ }
+ }
+ rmat[i][j] = nm1;
+ mulq(dn0,dn1,&q); dn0 = q;
+ }
+ }
+ *dn = dn0;
+ return 1;
+}
+
+#define ONE_STEP1 if ( zzz = *s ) { DMAR(zzz,hc,*tj,md,*tj) } tj++; s++;
+
+void reduce_reducers_mod(mat,row,col,md)
int **mat;
+int row,col;
+int md;
+{
+ int i,j,k,l,hc,zzz;
+ int *t,*s,*tj,*ind;
+
+ /* reduce the reducers */
+ ind = (int *)ALLOCA(row*sizeof(int));
+ for ( i = 0; i < row; i++ ) {
+ t = mat[i];
+ for ( j = 0; j < col && !t[j]; j++ );
+ /* register the position of the head term */
+ ind[i] = j;
+ for ( l = i-1; l >= 0; l-- ) {
+ /* reduce mat[i] by mat[l] */
+ if ( hc = t[ind[l]] ) {
+ /* mat[i] = mat[i]-hc*mat[l] */
+ j = ind[l];
+ s = mat[l]+j;
+ tj = t+j;
+ hc = md-hc;
+ k = col-j;
+ for ( ; k >= 64; k -= 64 ) {
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ ONE_STEP1 ONE_STEP1 ONE_STEP1 ONE_STEP1
+ }
+ for ( ; k > 0; k-- ) {
+ if ( zzz = *s ) { DMAR(zzz,hc,*tj,md,*tj) } tj++; s++;
+ }
+ }
+ }
+ }
+}
+
+/*
+ mat[i] : reducers (i=0,...,nred-1)
+ spolys (i=nred,...,row-1)
+ mat[0] < mat[1] < ... < mat[nred-1] w.r.t the term order
+ 1. reduce the reducers
+ 2. reduce spolys by the reduced reducers
+*/
+
+void pre_reduce_mod(mat,row,col,nred,md)
+int **mat;
+int row,col,nred;
+int md;
+{
+ int i,j,k,l,hc,inv;
+ int *t,*s,*tk,*ind;
+
+#if 1
+ /* reduce the reducers */
+ ind = (int *)ALLOCA(row*sizeof(int));
+ for ( i = 0; i < nred; i++ ) {
+ /* make mat[i] monic and mat[i] by mat[0],...,mat[i-1] */
+ t = mat[i];
+ for ( j = 0; j < col && !t[j]; j++ );
+ /* register the position of the head term */
+ ind[i] = j;
+ inv = invm(t[j],md);
+ for ( k = j; k < col; k++ )
+ if ( t[k] )
+ DMAR(t[k],inv,0,md,t[k])
+ for ( l = i-1; l >= 0; l-- ) {
+ /* reduce mat[i] by mat[l] */
+ if ( hc = t[ind[l]] ) {
+ /* mat[i] = mat[i]-hc*mat[l] */
+ for ( k = ind[l], hc = md-hc, s = mat[l]+k, tk = t+k;
+ k < col; k++, tk++, s++ )
+ if ( *s )
+ DMAR(*s,hc,*tk,md,*tk)
+ }
+ }
+ }
+ /* reduce the spolys */
+ for ( i = nred; i < row; i++ ) {
+ t = mat[i];
+ for ( l = nred-1; l >= 0; l-- ) {
+ /* reduce mat[i] by mat[l] */
+ if ( hc = t[ind[l]] ) {
+ /* mat[i] = mat[i]-hc*mat[l] */
+ for ( k = ind[l], hc = md-hc, s = mat[l]+k, tk = t+k;
+ k < col; k++, tk++, s++ )
+ if ( *s )
+ DMAR(*s,hc,*tk,md,*tk)
+ }
+ }
+ }
+#endif
+}
+/*
+ mat[i] : reducers (i=0,...,nred-1)
+ mat[0] < mat[1] < ... < mat[nred-1] w.r.t the term order
+*/
+
+void reduce_sp_by_red_mod(sp,redmat,ind,nred,col,md)
+int *sp,**redmat;
+int *ind;
+int nred,col;
+int md;
+{
+ int i,j,k,hc,zzz;
+ int *t,*s,*tj;
+
+ /* reduce the spolys by redmat */
+ for ( i = nred-1; i >= 0; i-- ) {
+ /* reduce sp by redmat[i] */
+ if ( hc = sp[ind[i]] ) {
+ /* sp = sp-hc*redmat[i] */
+ j = ind[i];
+ hc = md-hc;
+ s = redmat[i]+j;
+ tj = sp+j;
+ for ( k = col-j; k > 0; k-- ) {
+ if ( zzz = *s ) { DMAR(zzz,hc,*tj,md,*tj) } tj++; s++;
+ }
+ }
+ }
+}
+
+/*
+ rlist : reducers list
+ ht(BDY(rlist)) < ht(BDY(NEXT(rlist)) < ... w.r.t. the term order
+*/
+
+void reduce_reducers_mod_compress(rlist,nred,at,col,md,redmatp,indredp)
+NODE rlist;
+int nred;
+DL *at;
+int col,md;
+CDP **redmatp;
+int **indredp;
+{
+ CDP *redmat;
+ CDP t;
+ int *indred,*w;
+ int i,k;
+ NODE r;
+
+ *redmatp = redmat = (CDP *)CALLOC(nred,sizeof(CDP));
+ *indredp = indred = (int *)CALLOC(nred,sizeof(int));
+ w = (int *)CALLOC(col,sizeof(int));
+
+ _dpmod_to_vect_compress(BDY(rlist),at,&redmat[0]);
+ indred[0] = redmat[0]->body[0].index;
+
+ for ( i = 1, r = NEXT(rlist); i < nred; i++, r = NEXT(r) ) {
+ bzero(w,col*sizeof(int));
+ _dpmod_to_vect(BDY(r),at,w);
+ reduce_sp_by_red_mod_compress(w,redmat,indred,i,col,md);
+ compress_vect(w,col,&redmat[i]);
+ indred[i] = redmat[i]->body[0].index;
+ }
+}
+
+/*
+ mat[i] : compressed reducers (i=0,...,nred-1)
+ mat[0] < mat[1] < ... < mat[nred-1] w.r.t the term order
+*/
+
+int red_by_compress(m,p,r,hc,len)
+int m;
+unsigned int *p;
+register struct oCM *r;
+unsigned int hc;
+register int len;
+{
+ unsigned int up,lo;
+ unsigned int dmy;
+ unsigned int *pj;
+
+ p[r->index] = 0; r++;
+ for ( len--; len; len--, r++ ) {
+ pj = p+r->index;
+ DMA(r->c,hc,*pj,up,lo);
+ if ( up ) {
+ DSAB(m,up,lo,dmy,*pj);
+ } else
+ *pj = lo;
+ }
+}
+
+/* p -= hc*r */
+
+int red_by_vect(m,p,r,hc,len)
+int m;
+unsigned int *p,*r;
+unsigned int hc;
+int len;
+{
+ register unsigned int up,lo;
+ unsigned int dmy;
+
+ *p++ = 0; r++; len--;
+ for ( ; len; len--, r++, p++ )
+ if ( *r ) {
+ DMA(*r,hc,*p,up,lo);
+ if ( up ) {
+ DSAB(m,up,lo,dmy,*p);
+ } else
+ *p = lo;
+ }
+}
+
+void reduce_sp_by_red_mod_compress (sp,redmat,ind,nred,col,md)
+int *sp;
+CDP *redmat;
+int *ind;
+int nred,col;
+int md;
+{
+ int i,j,k,len;
+ unsigned int *tj;
+ CDP ri;
+ unsigned int hc,up,lo,up1,lo1,c;
+ unsigned int *usp;
+ struct oCM *rib;
+
+ usp = (unsigned int *)sp;
+ /* reduce the spolys by redmat */
+ for ( i = nred-1; i >= 0; i-- ) {
+ /* reduce sp by redmat[i] */
+ usp[ind[i]] %= md;
+ if ( hc = usp[ind[i]] ) {
+ /* sp = sp-hc*redmat[i] */
+ hc = md-hc;
+ ri = redmat[i];
+ len = ri->len;
+ red_by_compress(md,usp,ri->body,hc,len);
+ }
+ }
+ for ( i = 0; i < col; i++ )
+ if ( usp[i] >= md )
+ usp[i] %= md;
+}
+
+#define ONE_STEP2 if ( zzz = *pk ) { DMAR(zzz,a,*tk,md,*tk) } pk++; tk++;
+
+int generic_gauss_elim_mod(mat0,row,col,md,colstat)
+int **mat0;
int row,col,md;
int *colstat;
{
- int i,j,k,l,inv,a,rank;
- int *t,*pivot;
+ int i,j,k,l,inv,a,rank,zzz;
+ unsigned int *t,*pivot,*pk,*tk;
+ unsigned int **mat;
+ mat = (unsigned int **)mat0;
for ( rank = 0, j = 0; j < col; j++ ) {
- for ( i = rank; i < row && !mat[i][j]; i++ );
+ for ( i = rank; i < row; i++ )
+ mat[i][j] %= md;
+ for ( i = rank; i < row; i++ )
+ if ( mat[i][j] )
+ break;
if ( i == row ) {
colstat[j] = 0;
continue;
@@ -971,17 +1542,16 @@ int *colstat;
}
pivot = mat[rank];
inv = invm(pivot[j],md);
- for ( k = j; k < col; k++ )
- if ( pivot[k] ) {
- DMAR(pivot[k],inv,0,md,pivot[k])
+ for ( k = j, pk = pivot+k; k < col; k++, pk++ )
+ if ( *pk ) {
+ if ( *pk >= md )
+ *pk %= md;
+ DMAR(*pk,inv,0,md,*pk)
}
for ( i = rank+1; i < row; i++ ) {
t = mat[i];
if ( a = t[j] )
- for ( k = j, a = md - a; k < col; k++ )
- if ( pivot[k] ) {
- DMAR(pivot[k],a,t[k],md,t[k])
- }
+ red_by_vect(md,t+j,pivot+j,md-a,col-j);
}
rank++;
}
@@ -990,14 +1560,20 @@ int *colstat;
pivot = mat[l];
for ( i = 0; i < l; i++ ) {
t = mat[i];
+ t[j] %= md;
if ( a = t[j] )
- for ( k = j, a = md-a; k < col; k++ )
- if ( pivot[k] ) {
- DMAR(pivot[k],a,t[k],md,t[k])
- }
+ red_by_vect(md,t+j,pivot+j,md-a,col-j);
}
l--;
}
+ for ( j = 0, l = 0; l < rank; j++ )
+ if ( colstat[j] ) {
+ t = mat[l];
+ for ( k = j; k < col; k++ )
+ if ( t[k] >= md )
+ t[k] %= md;
+ l++;
+ }
return rank;
}
@@ -1036,7 +1612,10 @@ int *perm;
DMAR(inv,m,0,md,t[k])
for ( j = k+1, m = md - t[k]; j < col; j++ )
if ( pivot[j] ) {
- DMAR(m,pivot[j],t[j],md,t[j])
+ unsigned int tj;
+
+ DMAR(m,pivot[j],t[j],md,tj)
+ t[j] = tj;
}
}
}
@@ -1044,6 +1623,116 @@ int *perm;
return 1;
}
+/*
+ Input
+ a: a row x col matrix
+ md : a modulus
+
+ Output:
+ return : d = the rank of mat
+ a[0..(d-1)][0..(d-1)] : LU decomposition (a[i][i] = 1/U[i][i])
+ rinfo: array of length row
+ cinfo: array of length col
+ i-th row in new a <-> rinfo[i]-th row in old a
+ cinfo[j]=1 <=> j-th column is contained in the LU decomp.
+*/
+
+int find_lhs_and_lu_mod(a,row,col,md,rinfo,cinfo)
+unsigned int **a;
+unsigned int md;
+int **rinfo,**cinfo;
+{
+ int i,j,k,l,d;
+ int *rp,*cp;
+ unsigned int *t,*pivot;
+ unsigned int inv,m;
+
+ *rinfo = rp = (int *)MALLOC_ATOMIC(row*sizeof(int));
+ *cinfo = cp = (int *)MALLOC_ATOMIC(col*sizeof(int));
+ for ( i = 0; i < row; i++ )
+ rp[i] = i;
+ for ( k = 0, d = 0; k < col; k++ ) {
+ for ( i = d; i < row && !a[i][k]; i++ );
+ if ( i == row ) {
+ cp[k] = 0;
+ continue;
+ } else
+ cp[k] = 1;
+ if ( i != d ) {
+ j = rp[i]; rp[i] = rp[d]; rp[d] = j;
+ t = a[i]; a[i] = a[d]; a[d] = t;
+ }
+ pivot = a[d];
+ pivot[k] = inv = invm(pivot[k],md);
+ for ( i = d+1; i < row; i++ ) {
+ t = a[i];
+ if ( m = t[k] ) {
+ DMAR(inv,m,0,md,t[k])
+ for ( j = k+1, m = md - t[k]; j < col; j++ )
+ if ( pivot[j] ) {
+ unsigned int tj;
+ DMAR(m,pivot[j],t[j],md,tj)
+ t[j] = tj;
+ }
+ }
+ }
+ d++;
+ }
+ return d;
+}
+
+/*
+ Input
+ a : n x n matrix; a result of LU-decomposition
+ md : modulus
+ b : n x l matrix
+ Output
+ b = a^(-1)b
+ */
+
+void solve_by_lu_mod(a,n,md,b,l)
+int **a;
+int n;
+int md;
+int **b;
+int l;
+{
+ unsigned int *y,*c;
+ int i,j,k;
+ unsigned int t,m,m2;
+
+ y = (int *)MALLOC_ATOMIC(n*sizeof(int));
+ c = (int *)MALLOC_ATOMIC(n*sizeof(int));
+ m2 = md>>1;
+ for ( k = 0; k < l; k++ ) {
+ /* copy b[.][k] to c */
+ for ( i = 0; i < n; i++ )
+ c[i] = (unsigned int)b[i][k];
+ /* solve Ly=c */
+ for ( i = 0; i < n; i++ ) {
+ for ( t = c[i], j = 0; j < i; j++ )
+ if ( a[i][j] ) {
+ m = md - a[i][j];
+ DMAR(m,y[j],t,md,t)
+ }
+ y[i] = t;
+ }
+ /* solve Uc=y */
+ for ( i = n-1; i >= 0; i-- ) {
+ for ( t = y[i], j =i+1; j < n; j++ )
+ if ( a[i][j] ) {
+ m = md - a[i][j];
+ DMAR(m,c[j],t,md,t)
+ }
+ /* a[i][i] = 1/U[i][i] */
+ DMAR(t,a[i][i],0,md,c[i])
+ }
+ /* copy c to b[.][k] with normalization */
+ for ( i = 0; i < n; i++ )
+ b[i][k] = (int)(c[i]>m2 ? c[i]-md : c[i]);
+ }
+}
+
void Pleqm1(arg,rp)
NODE arg;
VECT *rp;
@@ -1501,6 +2190,68 @@ Q *r;
NTOQ(sum,sgn,*r);
}
+/* (k,l) element of a*b where a: .x n matrix, b: n x . integer matrix */
+
+void inner_product_mat_int_mod(a,b,n,k,l,r)
+Q **a;
+int **b;
+int n,k,l;
+Q *r;
+{
+ int la,lb,i;
+ int sgn,sgn1;
+ N wm,wma,sum,t;
+ Q aki;
+ int bil,bilsgn;
+ struct oN tn;
+
+ for ( la = 0, i = 0; i < n; i++ ) {
+ if ( aki = a[k][i] )
+ if ( DN(aki) )
+ error("inner_product_int : invalid argument");
+ else
+ la = MAX(PL(NM(aki)),la);
+ }
+ lb = 1;
+ sgn = 0;
+ sum= NALLOC(la+lb+2);
+ bzero((char *)sum,(la+lb+3)*sizeof(unsigned int));
+ wm = NALLOC(la+lb+2);
+ wma = NALLOC(la+lb+2);
+ for ( i = 0; i < n; i++ ) {
+ if ( !(aki = a[k][i]) || !(bil = b[i][l]) )
+ continue;
+ tn.p = 1;
+ if ( bil > 0 ) {
+ tn.b[0] = bil; bilsgn = 1;
+ } else {
+ tn.b[0] = -bil; bilsgn = -1;
+ }
+ _muln(NM(aki),&tn,wm);
+ sgn1 = SGN(aki)*bilsgn;
+ if ( !sgn ) {
+ sgn = sgn1;
+ t = wm; wm = sum; sum = t;
+ } else if ( sgn == sgn1 ) {
+ _addn(sum,wm,wma);
+ if ( !PL(wma) )
+ sgn = 0;
+ t = wma; wma = sum; sum = t;
+ } else {
+ /* sgn*sum+sgn1*wm = sgn*(sum-wm) */
+ sgn *= _subn(sum,wm,wma);
+ t = wma; wma = sum; sum = t;
+ }
+ }
+ GC_free(wm);
+ GC_free(wma);
+ if ( !sgn ) {
+ GC_free(sum);
+ *r = 0;
+ } else
+ NTOQ(sum,sgn,*r);
+}
+
void Pmul_mat_vect_int(arg,rp)
NODE arg;
VECT *rp;
@@ -1860,4 +2611,32 @@ PENTA:
}
/* exhausted */
return 1;
+}
+
+printqmat(mat,row,col)
+Q **mat;
+int row,col;
+{
+ int i,j;
+
+ for ( i = 0; i < row; i++ ) {
+ for ( j = 0; j < col; j++ ) {
+ printnum((Num)mat[i][j]); printf(" ");
+ }
+ printf("\n");
+ }
+}
+
+printimat(mat,row,col)
+int **mat;
+int row,col;
+{
+ int i,j;
+
+ for ( i = 0; i < row; i++ ) {
+ for ( j = 0; j < col; j++ ) {
+ printf("%d ",mat[i][j]);
+ }
+ printf("\n");
+ }
}