| version 1.38, 2004/09/21 05:23:13 |
version 1.50, 2006/01/05 00:21:20 |
|
|
| * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
| * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
| * |
* |
| * $OpenXM: OpenXM_contrib2/asir2000/builtin/array.c,v 1.37 2004/09/15 01:43:32 noro Exp $ |
* $OpenXM: OpenXM_contrib2/asir2000/builtin/array.c,v 1.49 2005/12/21 23:18:15 noro Exp $ |
| */ |
*/ |
| #include "ca.h" |
#include "ca.h" |
| #include "base.h" |
#include "base.h" |
| Line 64 extern int DP_Print; /* XXX */ |
|
| Line 64 extern int DP_Print; /* XXX */ |
|
| |
|
| void Pnewvect(), Pnewmat(), Psepvect(), Psize(), Pdet(), Pleqm(), Pleqm1(), Pgeninvm(); |
void Pnewvect(), Pnewmat(), Psepvect(), Psize(), Pdet(), Pleqm(), Pleqm1(), Pgeninvm(); |
| void Pinvmat(); |
void Pinvmat(); |
| void Pnewbytearray(); |
void Pnewbytearray(),Pmemoryplot_to_coord(); |
| |
|
| void Pgeneric_gauss_elim(); |
void Pgeneric_gauss_elim(); |
| void Pgeneric_gauss_elim_mod(); |
void Pgeneric_gauss_elim_mod(); |
| Line 107 struct ftab array_tab[] = { |
|
| Line 107 struct ftab array_tab[] = { |
|
| {"matr",Pmat,-99999999}, |
{"matr",Pmat,-99999999}, |
| {"matc",Pmatc,-99999999}, |
{"matc",Pmatc,-99999999}, |
| {"newbytearray",Pnewbytearray,-2}, |
{"newbytearray",Pnewbytearray,-2}, |
| |
{"memoryplot_to_coord",Pmemoryplot_to_coord,1}, |
| {"sepmat_destructive",Psepmat_destructive,2}, |
{"sepmat_destructive",Psepmat_destructive,2}, |
| {"sepvect",Psepvect,2}, |
{"sepvect",Psepvect,2}, |
| {"qsort",Pqsort,-2}, |
{"qsort",Pqsort,-2}, |
| Line 158 int generic_comp_obj(Obj *a,Obj *b) |
|
| Line 159 int generic_comp_obj(Obj *a,Obj *b) |
|
| } |
} |
| |
|
| |
|
| void Pqsort(NODE arg,VECT *rp) |
void Pqsort(NODE arg,LIST *rp) |
| { |
{ |
| VECT vect; |
VECT vect; |
| NODE n,n1; |
NODE n,n1; |
| Line 205 void Pqsort(NODE arg,VECT *rp) |
|
| Line 206 void Pqsort(NODE arg,VECT *rp) |
|
| for ( i = len - 1, n = 0; i >= 0; i-- ) { |
for ( i = len - 1, n = 0; i >= 0; i-- ) { |
| MKNODE(n1,a[i],n); n = n1; |
MKNODE(n1,a[i],n); n = n1; |
| } |
} |
| MKLIST((LIST)*rp,n); |
MKLIST(*rp,n); |
| }else { |
}else { |
| *rp = vect; |
*rp = (LIST)vect; |
| } |
} |
| } |
} |
| |
|
| Line 477 void Pnewbytearray(NODE arg,BYTEARRAY *rp) |
|
| Line 478 void Pnewbytearray(NODE arg,BYTEARRAY *rp) |
|
| *rp = array; |
*rp = array; |
| } |
} |
| |
|
| |
#define MEMORY_GETPOINT(a,len,x,y) (((a)[(len)*(y)+((x)>>3)])&(1<<((x)&7))) |
| |
|
| |
void Pmemoryplot_to_coord(NODE arg,LIST *rp) |
| |
{ |
| |
int len,blen,y,i,j; |
| |
char *a; |
| |
NODE r0,r,n; |
| |
LIST l; |
| |
BYTEARRAY ba; |
| |
Q iq,jq; |
| |
|
| |
asir_assert(ARG0(arg),O_LIST,"memoryplot_to_coord"); |
| |
arg = BDY((LIST)ARG0(arg)); |
| |
len = QTOS((Q)ARG0(arg)); |
| |
blen = (len+7)/8; |
| |
y = QTOS((Q)ARG1(arg)); |
| |
ba = (BYTEARRAY)ARG2(arg); a = ba->body; |
| |
r0 = 0; |
| |
for ( j = 0; j < y; j++ ) |
| |
for ( i = 0; i < len; i++ ) |
| |
if ( MEMORY_GETPOINT(a,blen,i,j) ) { |
| |
NEXTNODE(r0,r); |
| |
STOQ(i,iq); STOQ(j,jq); |
| |
n = mknode(2,iq,jq); |
| |
MKLIST(l,n); |
| |
BDY(r) = l; |
| |
} |
| |
if ( r0 ) NEXT(r) = 0; |
| |
MKLIST(*rp,r0); |
| |
} |
| |
|
| void Pnewmat(NODE arg,MAT *rp) |
void Pnewmat(NODE arg,MAT *rp) |
| { |
{ |
| int row,col; |
int row,col; |
| Line 760 void Psize(NODE arg,LIST *rp) |
|
| Line 792 void Psize(NODE arg,LIST *rp) |
|
| n = ((MAT)ARG0(arg))->row; m = ((MAT)ARG0(arg))->col; |
n = ((MAT)ARG0(arg))->row; m = ((MAT)ARG0(arg))->col; |
| STOQ(m,q); MKNODE(s,q,0); STOQ(n,q); MKNODE(t,q,s); |
STOQ(m,q); MKNODE(s,q,0); STOQ(n,q); MKNODE(t,q,s); |
| break; |
break; |
| |
case O_IMAT: |
| |
n = ((IMAT)ARG0(arg))->row; m = ((IMAT)ARG0(arg))->col; |
| |
STOQ(m,q); MKNODE(s,q,0); STOQ(n,q); MKNODE(t,q,s); |
| |
break; |
| default: |
default: |
| error("size : invalid argument"); break; |
error("size : invalid argument"); break; |
| } |
} |
| Line 828 void Pinvmat(NODE arg,LIST *rp) |
|
| Line 864 void Pinvmat(NODE arg,LIST *rp) |
|
| input : a row x col matrix A |
input : a row x col matrix A |
| A[I] <-> A[I][0]*x_0+A[I][1]*x_1+... |
A[I] <-> A[I][0]*x_0+A[I][1]*x_1+... |
| |
|
| output : [B,R,C] |
output : [B,D,R,C] |
| B : a rank(A) x col-rank(A) matrix |
B : a rank(A) x col-rank(A) matrix |
| |
D : the denominator |
| R : a vector of length rank(A) |
R : a vector of length rank(A) |
| C : a vector of length col-rank(A) |
C : a vector of length col-rank(A) |
| B[I] <-> x_{R[I]}+B[I][0]x_{C[0]}+B[I][1]x_{C[1]}+... |
B[I] <-> D*x_{R[I]}+B[I][0]x_{C[0]}+B[I][1]x_{C[1]}+... |
| */ |
*/ |
| |
|
| void Pgeneric_gauss_elim(NODE arg,LIST *rp) |
void Pgeneric_gauss_elim(NODE arg,LIST *rp) |
| { |
{ |
| NODE n0; |
NODE n0,opt,p; |
| MAT m,nm; |
MAT m,nm; |
| int *ri,*ci; |
int *ri,*ci; |
| VECT rind,cind; |
VECT rind,cind; |
| Q dn,q; |
Q dn,q; |
| int i,j,k,l,row,col,t,rank; |
int i,j,k,l,row,col,t,rank; |
| |
int is_hensel = 0; |
| |
char *key; |
| |
Obj value; |
| |
|
| |
if ( current_option ) { |
| |
for ( opt = current_option; opt; opt = NEXT(opt) ) { |
| |
p = BDY((LIST)BDY(opt)); |
| |
key = BDY((STRING)BDY(p)); |
| |
value = (Obj)BDY(NEXT(p)); |
| |
if ( !strcmp(key,"hensel") && value ) { |
| |
is_hensel = value ? 1 : 0; |
| |
break; |
| |
} |
| |
} |
| |
} |
| asir_assert(ARG0(arg),O_MAT,"generic_gauss_elim"); |
asir_assert(ARG0(arg),O_MAT,"generic_gauss_elim"); |
| m = (MAT)ARG0(arg); |
m = (MAT)ARG0(arg); |
| row = m->row; col = m->col; |
row = m->row; col = m->col; |
| rank = generic_gauss_elim(m,&nm,&dn,&ri,&ci); |
if ( is_hensel ) |
| |
rank = generic_gauss_elim_hensel(m,&nm,&dn,&ri,&ci); |
| |
else |
| |
rank = generic_gauss_elim(m,&nm,&dn,&ri,&ci); |
| t = col-rank; |
t = col-rank; |
| MKVECT(rind,rank); |
MKVECT(rind,rank); |
| MKVECT(cind,t); |
MKVECT(cind,t); |
| Line 871 void Pgeneric_gauss_elim(NODE arg,LIST *rp) |
|
| Line 925 void Pgeneric_gauss_elim(NODE arg,LIST *rp) |
|
| B : a rank(A) x col-rank(A) matrix |
B : a rank(A) x col-rank(A) matrix |
| R : a vector of length rank(A) |
R : a vector of length rank(A) |
| C : a vector of length col-rank(A) |
C : a vector of length col-rank(A) |
| |
RN : a vector of length rank(A) indicating useful rows |
| |
|
| B[I] <-> x_{R[I]}+B[I][0]x_{C[0]}+B[I][1]x_{C[1]}+... |
B[I] <-> x_{R[I]}+B[I][0]x_{C[0]}+B[I][1]x_{C[1]}+... |
| */ |
*/ |
| |
|
| Line 878 void Pgeneric_gauss_elim_mod(NODE arg,LIST *rp) |
|
| Line 934 void Pgeneric_gauss_elim_mod(NODE arg,LIST *rp) |
|
| { |
{ |
| NODE n0; |
NODE n0; |
| MAT m,mat; |
MAT m,mat; |
| VECT rind,cind; |
VECT rind,cind,rnum; |
| Q **tmat; |
Q **tmat; |
| int **wmat; |
int **wmat,**row0; |
| Q *rib,*cib; |
Q *rib,*cib,*rnb; |
| int *colstat; |
int *colstat,*p; |
| Q q; |
Q q; |
| int md,i,j,k,l,row,col,t,rank; |
int md,i,j,k,l,row,col,t,rank; |
| |
|
| Line 891 void Pgeneric_gauss_elim_mod(NODE arg,LIST *rp) |
|
| Line 947 void Pgeneric_gauss_elim_mod(NODE arg,LIST *rp) |
|
| m = (MAT)ARG0(arg); md = QTOS((Q)ARG1(arg)); |
m = (MAT)ARG0(arg); md = QTOS((Q)ARG1(arg)); |
| row = m->row; col = m->col; tmat = (Q **)m->body; |
row = m->row; col = m->col; tmat = (Q **)m->body; |
| wmat = (int **)almat(row,col); |
wmat = (int **)almat(row,col); |
| |
|
| |
row0 = (int **)ALLOCA(row*sizeof(int *)); |
| |
for ( i = 0; i < row; i++ ) row0[i] = wmat[i]; |
| |
|
| colstat = (int *)MALLOC_ATOMIC(col*sizeof(int)); |
colstat = (int *)MALLOC_ATOMIC(col*sizeof(int)); |
| for ( i = 0; i < row; i++ ) |
for ( i = 0; i < row; i++ ) |
| for ( j = 0; j < col; j++ ) |
for ( j = 0; j < col; j++ ) |
| Line 903 void Pgeneric_gauss_elim_mod(NODE arg,LIST *rp) |
|
| Line 963 void Pgeneric_gauss_elim_mod(NODE arg,LIST *rp) |
|
| wmat[i][j] = 0; |
wmat[i][j] = 0; |
| rank = generic_gauss_elim_mod(wmat,row,col,md,colstat); |
rank = generic_gauss_elim_mod(wmat,row,col,md,colstat); |
| |
|
| |
MKVECT(rnum,rank); |
| |
rnb = (Q *)rnum->body; |
| |
for ( i = 0; i < rank; i++ ) |
| |
for ( j = 0, p = wmat[i]; j < row; j++ ) |
| |
if ( p == row0[j] ) |
| |
STOQ(j,rnb[i]); |
| |
|
| MKMAT(mat,rank,col-rank); |
MKMAT(mat,rank,col-rank); |
| tmat = (Q **)mat->body; |
tmat = (Q **)mat->body; |
| for ( i = 0; i < rank; i++ ) |
for ( i = 0; i < rank; i++ ) |
| Line 920 void Pgeneric_gauss_elim_mod(NODE arg,LIST *rp) |
|
| Line 987 void Pgeneric_gauss_elim_mod(NODE arg,LIST *rp) |
|
| } else { |
} else { |
| STOQ(j,cib[l]); l++; |
STOQ(j,cib[l]); l++; |
| } |
} |
| n0 = mknode(3,mat,rind,cind); |
n0 = mknode(4,mat,rind,cind,rnum); |
| MKLIST(*rp,n0); |
MKLIST(*rp,n0); |
| } |
} |
| |
|
| Line 1171 int generic_gauss_elim_hensel(MAT mat,MAT *nmmat,Q *dn |
|
| Line 1238 int generic_gauss_elim_hensel(MAT mat,MAT *nmmat,Q *dn |
|
| int *cinfo,*rinfo; |
int *cinfo,*rinfo; |
| int *rind,*cind; |
int *rind,*cind; |
| int count; |
int count; |
| struct oEGT eg_mul,eg_inv,tmp0,tmp1; |
int ret; |
| |
struct oEGT eg_mul,eg_inv,eg_intrat,eg_check,tmp0,tmp1; |
| |
int period; |
| |
int *wx,*ptr; |
| |
int wxsize,nsize; |
| |
N wn; |
| |
Q wq; |
| |
|
| a0 = (Q **)mat->body; |
a0 = (Q **)mat->body; |
| row = mat->row; col = mat->col; |
row = mat->row; col = mat->col; |
| Line 1189 int generic_gauss_elim_hensel(MAT mat,MAT *nmmat,Q *dn |
|
| Line 1262 int generic_gauss_elim_hensel(MAT mat,MAT *nmmat,Q *dn |
|
| } else |
} else |
| wi[j] = 0; |
wi[j] = 0; |
| |
|
| |
if ( DP_Print ) { |
| |
fprintf(asir_out,"LU decomposition.."); fflush(asir_out); |
| |
} |
| rank = find_lhs_and_lu_mod((unsigned int **)w,row,col,md,&rinfo,&cinfo); |
rank = find_lhs_and_lu_mod((unsigned int **)w,row,col,md,&rinfo,&cinfo); |
| |
if ( DP_Print ) { |
| |
fprintf(asir_out,"done.\n"); fflush(asir_out); |
| |
} |
| a = (Q **)almat_pointer(rank,rank); /* lhs mat */ |
a = (Q **)almat_pointer(rank,rank); /* lhs mat */ |
| MKMAT(bmat,rank,col-rank); b = (Q **)bmat->body; /* lhs mat */ |
MKMAT(bmat,rank,col-rank); b = (Q **)bmat->body; /* lhs mat */ |
| for ( j = li = ri = 0; j < col; j++ ) |
for ( j = li = ri = 0; j < col; j++ ) |
| Line 1219 int generic_gauss_elim_hensel(MAT mat,MAT *nmmat,Q *dn |
|
| Line 1298 int generic_gauss_elim_hensel(MAT mat,MAT *nmmat,Q *dn |
|
| *cindp = cind = (int *)MALLOC_ATOMIC((ri)*sizeof(int)); |
*cindp = cind = (int *)MALLOC_ATOMIC((ri)*sizeof(int)); |
| |
|
| init_eg(&eg_mul); init_eg(&eg_inv); |
init_eg(&eg_mul); init_eg(&eg_inv); |
| for ( q = ONE, count = 0; ; count++ ) { |
init_eg(&eg_check); init_eg(&eg_intrat); |
| fprintf(stderr,"."); |
period = F4_INTRAT_PERIOD; |
| |
nsize = period; |
| |
wxsize = rank*ri*nsize; |
| |
wx = (int *)MALLOC_ATOMIC(wxsize*sizeof(int)); |
| |
for ( i = 0; i < wxsize; i++ ) wx[i] = 0; |
| |
for ( q = ONE, count = 0; ; ) { |
| |
if ( DP_Print ) |
| |
fprintf(stderr,"o"); |
| /* wc = -b mod md */ |
/* wc = -b mod md */ |
| |
get_eg(&tmp0); |
| for ( i = 0; i < rank; i++ ) |
for ( i = 0; i < rank; i++ ) |
| for ( j = 0, bi = b[i], wi = wc[i]; j < ri; j++ ) |
for ( j = 0, bi = b[i], wi = wc[i]; j < ri; j++ ) |
| if ( u = (Q)bi[j] ) { |
if ( u = (Q)bi[j] ) { |
| Line 1231 int generic_gauss_elim_hensel(MAT mat,MAT *nmmat,Q *dn |
|
| Line 1318 int generic_gauss_elim_hensel(MAT mat,MAT *nmmat,Q *dn |
|
| wi[j] = t; |
wi[j] = t; |
| } else |
} else |
| wi[j] = 0; |
wi[j] = 0; |
| /* wc = A^(-1)wc; wc is normalized */ |
/* wc = A^(-1)wc; wc is not normalized */ |
| get_eg(&tmp0); |
solve_by_lu_mod(w,rank,md,wc,ri,0); |
| solve_by_lu_mod(w,rank,md,wc,ri); |
/* wx += q*wc */ |
| |
ptr = wx; |
| |
for ( i = 0; i < rank; i++ ) |
| |
for ( j = 0, wi = wc[i]; j < ri; j++ ) { |
| |
if ( wi[j] ) |
| |
muln_1(BD(NM(q)),PL(NM(q)),wi[j],ptr); |
| |
ptr += nsize; |
| |
} |
| |
count++; |
| get_eg(&tmp1); |
get_eg(&tmp1); |
| add_eg(&eg_inv,&tmp0,&tmp1); |
add_eg(&eg_inv,&tmp0,&tmp1); |
| /* x = x-q*wc */ |
get_eg(&tmp0); |
| for ( i = 0; i < rank; i++ ) |
for ( i = 0; i < rank; i++ ) |
| for ( j = 0, xi = x[i], wi = wc[i]; j < ri; j++ ) { |
for ( j = 0; j < ri; j++ ) { |
| STOQ(wi[j],u); mulq(q,u,&s); |
inner_product_mat_int_mod(a,wc,rank,i,j,&u); |
| subq(xi[j],s,&u); xi[j] = u; |
addq(b[i][j],u,&s); |
| |
if ( s ) { |
| |
t = divin(NM(s),md,&tn); |
| |
if ( t ) |
| |
error("generic_gauss_elim_hensel:incosistent"); |
| |
NTOQ(tn,SGN(s),b[i][j]); |
| |
} else |
| |
b[i][j] = 0; |
| } |
} |
| |
get_eg(&tmp1); |
| |
add_eg(&eg_mul,&tmp0,&tmp1); |
| |
/* q = q*md */ |
| |
mulq(q,mdq,&u); q = u; |
| |
if ( count == period ) { |
| |
get_eg(&tmp0); |
| |
ptr = wx; |
| |
for ( i = 0; i < rank; i++ ) |
| |
for ( j = 0, xi = x[i]; j < ri; |
| |
j++, ptr += nsize ) { |
| |
for ( k = nsize-1; k >= 0 && !ptr[k]; k-- ); |
| |
if ( k >= 0 ) { |
| |
wn = NALLOC(k+1); |
| |
PL(wn) = k+1; |
| |
for ( l = 0; l <= k; l++ ) BD(wn)[l] = (unsigned int)ptr[l]; |
| |
NTOQ(wn,1,wq); |
| |
subq(xi[j],wq,&u); xi[j] = u; |
| |
} |
| |
} |
| |
ret = intmtoratm_q(xmat,NM(q),*nmmat,dn); |
| |
get_eg(&tmp1); add_eg(&eg_intrat,&tmp0,&tmp1); |
| |
if ( ret ) { |
| |
rind = (int *)MALLOC_ATOMIC(rank*sizeof(int)); |
| |
cind = (int *)MALLOC_ATOMIC((col-rank)*sizeof(int)); |
| |
for ( j = k = l = 0; j < col; j++ ) |
| |
if ( cinfo[j] ) |
| |
rind[k++] = j; |
| |
else |
| |
cind[l++] = j; |
| |
get_eg(&tmp0); |
| |
ret = gensolve_check(mat,*nmmat,*dn,rind,cind); |
| |
get_eg(&tmp1); add_eg(&eg_check,&tmp0,&tmp1); |
| |
if ( ret ) { |
| |
if ( DP_Print > 3 ) { |
| |
fprintf(stderr,"\n"); |
| |
print_eg("INV",&eg_inv); |
| |
print_eg("MUL",&eg_mul); |
| |
print_eg("INTRAT",&eg_intrat); |
| |
print_eg("CHECK",&eg_check); |
| |
fflush(asir_out); |
| |
} |
| |
*rindp = rind; |
| |
*cindp = cind; |
| |
for ( j = k = 0; j < col; j++ ) |
| |
if ( !cinfo[j] ) |
| |
cind[k++] = j; |
| |
return rank; |
| |
} |
| |
} else { |
| |
period = period*3/2; |
| |
count = 0; |
| |
nsize += period; |
| |
wxsize += rank*ri*nsize; |
| |
wx = (int *)REALLOC(wx,wxsize*sizeof(int)); |
| |
for ( i = 0; i < wxsize; i++ ) wx[i] = 0; |
| |
} |
| |
} |
| |
} |
| |
} |
| |
} |
| |
|
| |
int generic_gauss_elim_hensel_dalg(MAT mat,MAT *nmmat,Q *dn,int **rindp,int **cindp) |
| |
{ |
| |
MAT bmat,xmat; |
| |
Q **a0,**a,**b,**x,**nm; |
| |
Q *ai,*bi,*xi; |
| |
int row,col; |
| |
int **w; |
| |
int *wi; |
| |
int **wc; |
| |
Q mdq,q,s,u; |
| |
N tn; |
| |
int ind,md,i,j,k,l,li,ri,rank; |
| |
unsigned int t; |
| |
int *cinfo,*rinfo; |
| |
int *rind,*cind; |
| |
int count; |
| |
int ret; |
| |
struct oEGT eg_mul,eg_inv,eg_intrat,eg_check,tmp0,tmp1; |
| |
int period; |
| |
int *wx,*ptr; |
| |
int wxsize,nsize; |
| |
N wn; |
| |
Q wq; |
| |
NumberField nf; |
| |
DP *mb; |
| |
DP m; |
| |
int col1; |
| |
|
| |
nf = get_numberfield(); |
| |
mb = nf->mb; |
| |
a0 = (Q **)mat->body; |
| |
row = mat->row; col = mat->col; |
| |
w = (int **)almat(row,col); |
| |
for ( ind = 0; ; ind++ ) { |
| |
md = get_lprime(ind); |
| |
STOQ(md,mdq); |
| |
for ( i = 0; i < row; i++ ) |
| |
for ( j = 0, ai = a0[i], wi = w[i]; j < col; j++ ) |
| |
if ( q = (Q)ai[j] ) { |
| |
t = rem(NM(q),md); |
| |
if ( t && SGN(q) < 0 ) |
| |
t = (md - t) % md; |
| |
wi[j] = t; |
| |
} else |
| |
wi[j] = 0; |
| |
|
| |
if ( DP_Print ) { |
| |
fprintf(asir_out,"LU decomposition.."); fflush(asir_out); |
| |
} |
| |
rank = find_lhs_and_lu_mod((unsigned int **)w,row,col,md,&rinfo,&cinfo); |
| |
if ( DP_Print ) { |
| |
fprintf(asir_out,"done.\n"); fflush(asir_out); |
| |
} |
| |
for ( i = 0; i < col-1; i++ ) { |
| |
if ( !cinfo[i] ) { |
| |
m = mb[i]; |
| |
for ( j = i+1; j < col-1; j++ ) |
| |
if ( dp_redble(mb[j],m) ) |
| |
cinfo[j] = -1; |
| |
} |
| |
} |
| |
a = (Q **)almat_pointer(rank,rank); /* lhs mat */ |
| |
MKMAT(bmat,rank,col-rank); b = (Q **)bmat->body; /* lhs mat */ |
| |
for ( j = li = ri = 0; j < col; j++ ) |
| |
if ( cinfo[j] > 0 ) { |
| |
/* the column is in lhs */ |
| |
for ( i = 0; i < rank; i++ ) { |
| |
w[i][li] = w[i][j]; |
| |
a[i][li] = a0[rinfo[i]][j]; |
| |
} |
| |
li++; |
| |
} else if ( !cinfo[j] ) { |
| |
/* the column is in rhs */ |
| |
for ( i = 0; i < rank; i++ ) |
| |
b[i][ri] = a0[rinfo[i]][j]; |
| |
ri++; |
| |
} |
| |
|
| |
/* solve Ax+B=0; A: rank x rank, B: rank x ri */ |
| |
MKMAT(xmat,rank,ri); x = (Q **)(xmat)->body; |
| |
MKMAT(*nmmat,rank,ri); nm = (Q **)(*nmmat)->body; |
| |
/* use the right part of w as work area */ |
| |
wc = (int **)almat(rank,ri); |
| |
for ( i = 0; i < rank; i++ ) |
| |
wc[i] = w[i]+rank; |
| |
*rindp = rind = (int *)MALLOC_ATOMIC(rank*sizeof(int)); |
| |
*cindp = cind = (int *)MALLOC_ATOMIC((col-rank)*sizeof(int)); |
| |
init_eg(&eg_mul); init_eg(&eg_inv); |
| |
init_eg(&eg_check); init_eg(&eg_intrat); |
| |
period = F4_INTRAT_PERIOD; |
| |
nsize = period; |
| |
wxsize = rank*ri*nsize; |
| |
wx = (int *)MALLOC_ATOMIC(wxsize*sizeof(int)); |
| |
for ( i = 0; i < wxsize; i++ ) wx[i] = 0; |
| |
for ( q = ONE, count = 0; ; ) { |
| |
if ( DP_Print ) |
| |
fprintf(stderr,"o"); |
| |
/* wc = -b mod md */ |
| get_eg(&tmp0); |
get_eg(&tmp0); |
| for ( i = 0; i < rank; i++ ) |
for ( i = 0; i < rank; i++ ) |
| |
for ( j = 0, bi = b[i], wi = wc[i]; j < ri; j++ ) |
| |
if ( u = (Q)bi[j] ) { |
| |
t = rem(NM(u),md); |
| |
if ( t && SGN(u) > 0 ) |
| |
t = (md - t) % md; |
| |
wi[j] = t; |
| |
} else |
| |
wi[j] = 0; |
| |
/* wc = A^(-1)wc; wc is not normalized */ |
| |
solve_by_lu_mod(w,rank,md,wc,ri,0); |
| |
/* wx += q*wc */ |
| |
ptr = wx; |
| |
for ( i = 0; i < rank; i++ ) |
| |
for ( j = 0, wi = wc[i]; j < ri; j++ ) { |
| |
if ( wi[j] ) |
| |
muln_1(BD(NM(q)),PL(NM(q)),wi[j],ptr); |
| |
ptr += nsize; |
| |
} |
| |
count++; |
| |
get_eg(&tmp1); |
| |
add_eg(&eg_inv,&tmp0,&tmp1); |
| |
get_eg(&tmp0); |
| |
for ( i = 0; i < rank; i++ ) |
| for ( j = 0; j < ri; j++ ) { |
for ( j = 0; j < ri; j++ ) { |
| inner_product_mat_int_mod(a,wc,rank,i,j,&u); |
inner_product_mat_int_mod(a,wc,rank,i,j,&u); |
| addq(b[i][j],u,&s); |
addq(b[i][j],u,&s); |
| Line 1259 int generic_gauss_elim_hensel(MAT mat,MAT *nmmat,Q *dn |
|
| Line 1543 int generic_gauss_elim_hensel(MAT mat,MAT *nmmat,Q *dn |
|
| add_eg(&eg_mul,&tmp0,&tmp1); |
add_eg(&eg_mul,&tmp0,&tmp1); |
| /* q = q*md */ |
/* q = q*md */ |
| mulq(q,mdq,&u); q = u; |
mulq(q,mdq,&u); q = u; |
| if ( !(count % F4_INTRAT_PERIOD) && intmtoratm_q(xmat,NM(q),*nmmat,dn) ) { |
if ( count == period ) { |
| for ( j = k = l = 0; j < col; j++ ) |
get_eg(&tmp0); |
| if ( cinfo[j] ) |
ptr = wx; |
| rind[k++] = j; |
for ( i = 0; i < rank; i++ ) |
| else |
for ( j = 0, xi = x[i]; j < ri; |
| cind[l++] = j; |
j++, ptr += nsize ) { |
| if ( gensolve_check(mat,*nmmat,*dn,rind,cind) ) { |
for ( k = nsize-1; k >= 0 && !ptr[k]; k-- ); |
| fprintf(stderr,"\n"); |
if ( k >= 0 ) { |
| print_eg("INV",&eg_inv); |
wn = NALLOC(k+1); |
| print_eg("MUL",&eg_mul); |
PL(wn) = k+1; |
| fflush(asir_out); |
for ( l = 0; l <= k; l++ ) BD(wn)[l] = (unsigned int)ptr[l]; |
| return rank; |
NTOQ(wn,1,wq); |
| |
subq(xi[j],wq,&u); xi[j] = u; |
| |
} |
| |
} |
| |
ret = intmtoratm_q(xmat,NM(q),*nmmat,dn); |
| |
get_eg(&tmp1); add_eg(&eg_intrat,&tmp0,&tmp1); |
| |
if ( ret ) { |
| |
for ( j = k = l = 0; j < col; j++ ) |
| |
if ( cinfo[j] > 0 ) |
| |
rind[k++] = j; |
| |
else if ( !cinfo[j] ) |
| |
cind[l++] = j; |
| |
get_eg(&tmp0); |
| |
ret = gensolve_check(mat,*nmmat,*dn,rind,cind); |
| |
get_eg(&tmp1); add_eg(&eg_check,&tmp0,&tmp1); |
| |
if ( ret ) { |
| |
if ( DP_Print > 3 ) { |
| |
fprintf(stderr,"\n"); |
| |
print_eg("INV",&eg_inv); |
| |
print_eg("MUL",&eg_mul); |
| |
print_eg("INTRAT",&eg_intrat); |
| |
print_eg("CHECK",&eg_check); |
| |
fflush(asir_out); |
| |
} |
| |
return rank; |
| |
} |
| |
} else { |
| |
period = period*3/2; |
| |
count = 0; |
| |
nsize += period; |
| |
wxsize += rank*ri*nsize; |
| |
wx = (int *)REALLOC(wx,wxsize*sizeof(int)); |
| |
for ( i = 0; i < wxsize; i++ ) wx[i] = 0; |
| } |
} |
| } |
} |
| } |
} |
| Line 1872 int find_lhs_and_lu_mod(unsigned int **a,int row,int c |
|
| Line 2188 int find_lhs_and_lu_mod(unsigned int **a,int row,int c |
|
| b = a^(-1)b |
b = a^(-1)b |
| */ |
*/ |
| |
|
| void solve_by_lu_mod(int **a,int n,int md,int **b,int l) |
void solve_by_lu_mod(int **a,int n,int md,int **b,int l,int normalize) |
| { |
{ |
| unsigned int *y,*c; |
unsigned int *y,*c; |
| int i,j,k; |
int i,j,k; |
| Line 1905 void solve_by_lu_mod(int **a,int n,int md,int **b,int |
|
| Line 2221 void solve_by_lu_mod(int **a,int n,int md,int **b,int |
|
| DMAR(t,a[i][i],0,md,c[i]) |
DMAR(t,a[i][i],0,md,c[i]) |
| } |
} |
| /* copy c to b[.][k] with normalization */ |
/* copy c to b[.][k] with normalization */ |
| for ( i = 0; i < n; i++ ) |
if ( normalize ) |
| b[i][k] = (int)(c[i]>m2 ? c[i]-md : c[i]); |
for ( i = 0; i < n; i++ ) |
| |
b[i][k] = (int)(c[i]>m2 ? c[i]-md : c[i]); |
| |
else |
| |
for ( i = 0; i < n; i++ ) |
| |
b[i][k] = c[i]; |
| } |
} |
| } |
} |
| |
|