version 1.2, 2000/03/14 05:25:43 |
version 1.3, 2000/04/20 02:20:15 |
|
|
/* $OpenXM: OpenXM_contrib2/asir2000/builtin/array.c,v 1.1.1.1 1999/12/03 07:39:07 noro Exp $ */ |
/* $OpenXM: OpenXM_contrib2/asir2000/builtin/array.c,v 1.2 2000/03/14 05:25:43 noro Exp $ */ |
#include "ca.h" |
#include "ca.h" |
#include "base.h" |
#include "base.h" |
#include "parse.h" |
#include "parse.h" |
|
|
|
|
extern int Print; /* XXX */ |
extern int Print; /* XXX */ |
|
|
|
void inner_product_mat_int_mod(Q **,int **,int,int,int,Q *); |
|
void solve_by_lu_mod(int **,int,int,int **,int); |
void solve_by_lu_gfmmat(GFMMAT,unsigned int,unsigned int *,unsigned int *); |
void solve_by_lu_gfmmat(GFMMAT,unsigned int,unsigned int *,unsigned int *); |
int lu_gfmmat(GFMMAT,unsigned int,int *); |
int lu_gfmmat(GFMMAT,unsigned int,int *); |
void mat_to_gfmmat(MAT,unsigned int,GFMMAT *); |
void mat_to_gfmmat(MAT,unsigned int,GFMMAT *); |
|
|
else |
else |
cind[l++] = j; |
cind[l++] = j; |
get_eg(&tmp0); |
get_eg(&tmp0); |
if ( gensolve_check(mat,*nm,*dn,rind,cind) ) |
if ( gensolve_check(mat,*nm,*dn,rind,cind) ) { |
get_eg(&tmp1); |
get_eg(&tmp1); |
add_eg(&eg_gschk,&tmp0,&tmp1); |
add_eg(&eg_gschk,&tmp0,&tmp1); |
add_eg(&eg_gschk_split,&tmp0,&tmp1); |
add_eg(&eg_gschk_split,&tmp0,&tmp1); |
if ( Print ) { |
if ( Print ) { |
print_eg("Mod",&eg_mod_split); |
print_eg("Mod",&eg_mod_split); |
print_eg("Elim",&eg_elim_split); |
print_eg("Elim",&eg_elim_split); |
print_eg("ChRem",&eg_chrem_split); |
print_eg("ChRem",&eg_chrem_split); |
print_eg("IntRat",&eg_intrat_split); |
print_eg("IntRat",&eg_intrat_split); |
print_eg("Check",&eg_gschk_split); |
print_eg("Check",&eg_gschk_split); |
fflush(asir_out); |
fflush(asir_out); |
|
} |
|
return rank; |
} |
} |
return rank; |
|
} |
} |
} |
} |
} |
} |
} |
} |
|
|
|
int generic_gauss_elim_hensel(mat,nmmat,dn,rindp,cindp) |
|
MAT mat; |
|
MAT *nmmat; |
|
Q *dn; |
|
int **rindp,**cindp; |
|
{ |
|
MAT bmat,xmat; |
|
Q **a0,**a,**b,**x,**nm; |
|
Q *ai,*bi,*xi; |
|
int row,col; |
|
int **w; |
|
int *wi; |
|
int **wc; |
|
Q mdq,q,s,u; |
|
N tn; |
|
int ind,md,i,j,k,l,li,ri,rank; |
|
unsigned int t; |
|
int *cinfo,*rinfo; |
|
int *rind,*cind; |
|
int count; |
|
struct oEGT eg_mul,eg_inv,tmp0,tmp1; |
|
|
|
a0 = (Q **)mat->body; |
|
row = mat->row; col = mat->col; |
|
w = (int **)almat(row,col); |
|
for ( ind = 0; ; ind++ ) { |
|
md = lprime[ind]; |
|
STOQ(md,mdq); |
|
for ( i = 0; i < row; i++ ) |
|
for ( j = 0, ai = a0[i], wi = w[i]; j < col; j++ ) |
|
if ( q = (Q)ai[j] ) { |
|
t = rem(NM(q),md); |
|
if ( t && SGN(q) < 0 ) |
|
t = (md - t) % md; |
|
wi[j] = t; |
|
} else |
|
wi[j] = 0; |
|
|
|
rank = find_lhs_and_lu_mod(w,row,col,md,&rinfo,&cinfo); |
|
a = (Q **)almat_pointer(rank,rank); /* lhs mat */ |
|
MKMAT(bmat,rank,col-rank); b = (Q **)bmat->body; /* lhs mat */ |
|
for ( j = li = ri = 0; j < col; j++ ) |
|
if ( cinfo[j] ) { |
|
/* the column is in lhs */ |
|
for ( i = 0; i < rank; i++ ) { |
|
w[i][li] = w[i][j]; |
|
a[i][li] = a0[rinfo[i]][j]; |
|
} |
|
li++; |
|
} else { |
|
/* the column is in rhs */ |
|
for ( i = 0; i < rank; i++ ) |
|
b[i][ri] = a0[rinfo[i]][j]; |
|
ri++; |
|
} |
|
|
|
/* solve Ax+B=0; A: rank x rank, B: rank x ri */ |
|
MKMAT(xmat,rank,ri); x = (Q **)(xmat)->body; |
|
MKMAT(*nmmat,rank,ri); nm = (Q **)(*nmmat)->body; |
|
/* use the right part of w as work area */ |
|
/* ri = col - rank */ |
|
wc = (int **)almat(rank,ri); |
|
for ( i = 0; i < rank; i++ ) |
|
wc[i] = w[i]+rank; |
|
*rindp = rind = (int *)MALLOC_ATOMIC(rank*sizeof(int)); |
|
*cindp = cind = (int *)MALLOC_ATOMIC((ri)*sizeof(int)); |
|
|
|
init_eg(&eg_mul); init_eg(&eg_inv); |
|
for ( q = ONE, count = 0; ; count++ ) { |
|
fprintf(stderr,"."); |
|
/* wc = -b mod md */ |
|
for ( i = 0; i < rank; i++ ) |
|
for ( j = 0, bi = b[i], wi = wc[i]; j < ri; j++ ) |
|
if ( u = (Q)bi[j] ) { |
|
t = rem(NM(u),md); |
|
if ( t && SGN(u) > 0 ) |
|
t = (md - t) % md; |
|
wi[j] = t; |
|
} else |
|
wi[j] = 0; |
|
/* wc = A^(-1)wc; wc is normalized */ |
|
get_eg(&tmp0); |
|
solve_by_lu_mod(w,rank,md,wc,ri); |
|
get_eg(&tmp1); |
|
add_eg(&eg_inv,&tmp0,&tmp1); |
|
/* x = x-q*wc */ |
|
for ( i = 0; i < rank; i++ ) |
|
for ( j = 0, xi = x[i], wi = wc[i]; j < ri; j++ ) { |
|
STOQ(wi[j],u); mulq(q,u,&s); |
|
subq(xi[j],s,&u); xi[j] = u; |
|
} |
|
get_eg(&tmp0); |
|
for ( i = 0; i < rank; i++ ) |
|
for ( j = 0; j < ri; j++ ) { |
|
inner_product_mat_int_mod(a,wc,rank,i,j,&u); |
|
addq(b[i][j],u,&s); |
|
if ( s ) { |
|
t = divin(NM(s),md,&tn); |
|
if ( t ) |
|
error("generic_gauss_elim_hensel:incosistent"); |
|
NTOQ(tn,SGN(s),b[i][j]); |
|
} else |
|
b[i][j] = 0; |
|
} |
|
get_eg(&tmp1); |
|
add_eg(&eg_mul,&tmp0,&tmp1); |
|
/* q = q*md */ |
|
mulq(q,mdq,&u); q = u; |
|
if ( !(count % 2) && intmtoratm_q(xmat,NM(q),*nmmat,dn) ) { |
|
for ( j = k = l = 0; j < col; j++ ) |
|
if ( cinfo[j] ) |
|
rind[k++] = j; |
|
else |
|
cind[l++] = j; |
|
if ( gensolve_check(mat,*nmmat,*dn,rind,cind) ) { |
|
fprintf(stderr,"\n"); |
|
print_eg("INV",&eg_inv); |
|
print_eg("MUL",&eg_mul); |
|
fflush(asir_out); |
|
return rank; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
int f4_nocheck; |
int f4_nocheck; |
|
|
int gensolve_check(mat,nm,dn,rind,cind) |
int gensolve_check(mat,nm,dn,rind,cind) |
|
|
N u,unm,udn; |
N u,unm,udn; |
int sgn,ret; |
int sgn,ret; |
|
|
|
if ( UNIN(md) ) |
|
return 0; |
row = mat->row; col = mat->col; |
row = mat->row; col = mat->col; |
bshiftn(md,1,&t); |
bshiftn(md,1,&t); |
isqrt(t,&s); |
isqrt(t,&s); |
|
|
return 1; |
return 1; |
} |
} |
|
|
|
/* mat->body = Q ** */ |
|
|
|
int intmtoratm_q(mat,md,nm,dn) |
|
MAT mat; |
|
N md; |
|
MAT nm; |
|
Q *dn; |
|
{ |
|
N t,s,b; |
|
Q bound,dn0,dn1,nm1,q,tq; |
|
int i,j,k,l,row,col; |
|
Q **rmat; |
|
Q **tmat; |
|
Q *tmi; |
|
Q *nmk; |
|
N u,unm,udn; |
|
int sgn,ret; |
|
|
|
if ( UNIN(md) ) |
|
return 0; |
|
row = mat->row; col = mat->col; |
|
bshiftn(md,1,&t); |
|
isqrt(t,&s); |
|
bshiftn(s,64,&b); |
|
if ( !b ) |
|
b = ONEN; |
|
dn0 = ONE; |
|
tmat = (Q **)mat->body; |
|
rmat = (Q **)nm->body; |
|
for ( i = 0; i < row; i++ ) |
|
for ( j = 0, tmi = tmat[i]; j < col; j++ ) |
|
if ( tmi[j] ) { |
|
muln(NM(tmi[j]),NM(dn0),&s); |
|
remn(s,md,&u); |
|
ret = inttorat(u,md,b,&sgn,&unm,&udn); |
|
if ( !ret ) |
|
return 0; |
|
else { |
|
if ( SGN(tmi[j])<0 ) |
|
sgn = -sgn; |
|
NTOQ(unm,sgn,nm1); |
|
NTOQ(udn,1,dn1); |
|
if ( !UNIQ(dn1) ) { |
|
for ( k = 0; k < i; k++ ) |
|
for ( l = 0, nmk = rmat[k]; l < col; l++ ) { |
|
mulq(nmk[l],dn1,&q); nmk[l] = q; |
|
} |
|
for ( l = 0, nmk = rmat[i]; l < j; l++ ) { |
|
mulq(nmk[l],dn1,&q); nmk[l] = q; |
|
} |
|
} |
|
rmat[i][j] = nm1; |
|
mulq(dn0,dn1,&q); dn0 = q; |
|
} |
|
} |
|
*dn = dn0; |
|
return 1; |
|
} |
|
|
int generic_gauss_elim_mod(mat,row,col,md,colstat) |
int generic_gauss_elim_mod(mat,row,col,md,colstat) |
int **mat; |
int **mat; |
int row,col,md; |
int row,col,md; |
|
|
return 1; |
return 1; |
} |
} |
|
|
|
/* |
|
Input |
|
a: a row x col matrix |
|
md : a modulus |
|
|
|
Output: |
|
return : d = the rank of mat |
|
a[0..(d-1)][0..(d-1)] : LU decomposition (a[i][i] = 1/U[i][i]) |
|
rinfo: array of length row |
|
cinfo: array of length col |
|
i-th row in new a <-> rinfo[i]-th row in old a |
|
cinfo[j]=1 <=> j-th column is contained in the LU decomp. |
|
*/ |
|
|
|
int find_lhs_and_lu_mod(a,row,col,md,rinfo,cinfo) |
|
unsigned int **a; |
|
unsigned int md; |
|
int **rinfo,**cinfo; |
|
{ |
|
int i,j,k,l,d; |
|
int *rp,*cp; |
|
unsigned int *t,*pivot; |
|
unsigned int inv,m; |
|
|
|
*rinfo = rp = (int *)MALLOC_ATOMIC(row*sizeof(int)); |
|
*cinfo = cp = (int *)MALLOC_ATOMIC(col*sizeof(int)); |
|
for ( i = 0; i < row; i++ ) |
|
rp[i] = i; |
|
for ( k = 0, d = 0; k < col; k++ ) { |
|
for ( i = d; i < row && !a[i][k]; i++ ); |
|
if ( i == row ) { |
|
cp[k] = 0; |
|
continue; |
|
} else |
|
cp[k] = 1; |
|
if ( i != d ) { |
|
j = rp[i]; rp[i] = rp[d]; rp[d] = j; |
|
t = a[i]; a[i] = a[d]; a[d] = t; |
|
} |
|
pivot = a[d]; |
|
pivot[k] = inv = invm(pivot[k],md); |
|
for ( i = d+1; i < row; i++ ) { |
|
t = a[i]; |
|
if ( m = t[k] ) { |
|
DMAR(inv,m,0,md,t[k]) |
|
for ( j = k+1, m = md - t[k]; j < col; j++ ) |
|
if ( pivot[j] ) { |
|
DMAR(m,pivot[j],t[j],md,t[j]) |
|
} |
|
} |
|
} |
|
d++; |
|
} |
|
return d; |
|
} |
|
|
|
/* |
|
Input |
|
a : n x n matrix; a result of LU-decomposition |
|
md : modulus |
|
b : n x l matrix |
|
Output |
|
b = a^(-1)b |
|
*/ |
|
|
|
void solve_by_lu_mod(a,n,md,b,l) |
|
int **a; |
|
int n; |
|
int md; |
|
int **b; |
|
int l; |
|
{ |
|
unsigned int *y,*c; |
|
int i,j,k; |
|
unsigned int t,m,m2; |
|
|
|
y = (int *)MALLOC_ATOMIC(n*sizeof(int)); |
|
c = (int *)MALLOC_ATOMIC(n*sizeof(int)); |
|
m2 = md>>1; |
|
for ( k = 0; k < l; k++ ) { |
|
/* copy b[.][k] to c */ |
|
for ( i = 0; i < n; i++ ) |
|
c[i] = (unsigned int)b[i][k]; |
|
/* solve Ly=c */ |
|
for ( i = 0; i < n; i++ ) { |
|
for ( t = c[i], j = 0; j < i; j++ ) |
|
if ( a[i][j] ) { |
|
m = md - a[i][j]; |
|
DMAR(m,y[j],t,md,t) |
|
} |
|
y[i] = t; |
|
} |
|
/* solve Uc=y */ |
|
for ( i = n-1; i >= 0; i-- ) { |
|
for ( t = y[i], j =i+1; j < n; j++ ) |
|
if ( a[i][j] ) { |
|
m = md - a[i][j]; |
|
DMAR(m,c[j],t,md,t) |
|
} |
|
/* a[i][i] = 1/U[i][i] */ |
|
DMAR(t,a[i][i],0,md,c[i]) |
|
} |
|
/* copy c to b[.][k] with normalization */ |
|
for ( i = 0; i < n; i++ ) |
|
b[i][k] = (int)(c[i]>m2 ? c[i]-md : c[i]); |
|
} |
|
} |
|
|
void Pleqm1(arg,rp) |
void Pleqm1(arg,rp) |
NODE arg; |
NODE arg; |
VECT *rp; |
VECT *rp; |
|
|
NTOQ(sum,sgn,*r); |
NTOQ(sum,sgn,*r); |
} |
} |
|
|
|
/* (k,l) element of a*b where a: .x n matrix, b: n x . integer matrix */ |
|
|
|
void inner_product_mat_int_mod(a,b,n,k,l,r) |
|
Q **a; |
|
int **b; |
|
int n,k,l; |
|
Q *r; |
|
{ |
|
int la,lb,i; |
|
int sgn,sgn1; |
|
N wm,wma,sum,t; |
|
Q aki; |
|
int bil,bilsgn; |
|
struct oN tn; |
|
|
|
for ( la = 0, i = 0; i < n; i++ ) { |
|
if ( aki = a[k][i] ) |
|
if ( DN(aki) ) |
|
error("inner_product_int : invalid argument"); |
|
else |
|
la = MAX(PL(NM(aki)),la); |
|
} |
|
lb = 1; |
|
sgn = 0; |
|
sum= NALLOC(la+lb+2); |
|
bzero((char *)sum,(la+lb+3)*sizeof(unsigned int)); |
|
wm = NALLOC(la+lb+2); |
|
wma = NALLOC(la+lb+2); |
|
for ( i = 0; i < n; i++ ) { |
|
if ( !(aki = a[k][i]) || !(bil = b[i][l]) ) |
|
continue; |
|
tn.p = 1; |
|
if ( bil > 0 ) { |
|
tn.b[0] = bil; bilsgn = 1; |
|
} else { |
|
tn.b[0] = -bil; bilsgn = -1; |
|
} |
|
_muln(NM(aki),&tn,wm); |
|
sgn1 = SGN(aki)*bilsgn; |
|
if ( !sgn ) { |
|
sgn = sgn1; |
|
t = wm; wm = sum; sum = t; |
|
} else if ( sgn == sgn1 ) { |
|
_addn(sum,wm,wma); |
|
if ( !PL(wma) ) |
|
sgn = 0; |
|
t = wma; wma = sum; sum = t; |
|
} else { |
|
/* sgn*sum+sgn1*wm = sgn*(sum-wm) */ |
|
sgn *= _subn(sum,wm,wma); |
|
t = wma; wma = sum; sum = t; |
|
} |
|
} |
|
GC_free(wm); |
|
GC_free(wma); |
|
if ( !sgn ) { |
|
GC_free(sum); |
|
*r = 0; |
|
} else |
|
NTOQ(sum,sgn,*r); |
|
} |
|
|
void Pmul_mat_vect_int(arg,rp) |
void Pmul_mat_vect_int(arg,rp) |
NODE arg; |
NODE arg; |
VECT *rp; |
VECT *rp; |
|
|
} |
} |
/* exhausted */ |
/* exhausted */ |
return 1; |
return 1; |
|
} |
|
|
|
printqmat(mat,row,col) |
|
Q **mat; |
|
int row,col; |
|
{ |
|
int i,j; |
|
|
|
for ( i = 0; i < row; i++ ) { |
|
for ( j = 0; j < col; j++ ) { |
|
printnum(mat[i][j]); printf(" "); |
|
} |
|
printf("\n"); |
|
} |
|
} |
|
|
|
printimat(mat,row,col) |
|
int **mat; |
|
int row,col; |
|
{ |
|
int i,j; |
|
|
|
for ( i = 0; i < row; i++ ) { |
|
for ( j = 0; j < col; j++ ) { |
|
printf("%d ",mat[i][j]); |
|
} |
|
printf("\n"); |
|
} |
} |
} |