===================================================================
RCS file: /home/cvs/OpenXM_contrib/gnuplot/docs/Attic/gnuplot.doc,v
retrieving revision 1.1
retrieving revision 1.1.1.3
diff -u -p -r1.1 -r1.1.1.3
--- OpenXM_contrib/gnuplot/docs/Attic/gnuplot.doc 2000/01/09 17:01:06 1.1
+++ OpenXM_contrib/gnuplot/docs/Attic/gnuplot.doc 2003/09/15 07:09:33 1.1.1.3
@@ -1,4 +1,4 @@
-C RCS $Id: gnuplot.doc,v 1.1 2000/01/09 17:01:06 maekawa Exp $
+C RCS $Id: gnuplot.doc,v 1.1.1.3 2003/09/15 07:09:33 ohara Exp $
C 3 December 1998
C Copyright (C) 1986 - 1993, 1998 Thomas Williams, Colin Kelley
C
@@ -129,7 +129,7 @@ C
The new `gnuplot` user should begin by reading about `plotting` (if on-line,
type `help plotting`).
-^ Simple Plots Demo
+^ Simple Plots Demo
2 Seeking-assistance
?seeking-assistance
There is a mailing list for `gnuplot` users. Note, however, that the
@@ -158,12 +158,13 @@ C
^
Before seeking help, please check the
-^
+^
FAQ (Frequently Asked Questions) list.
^
If you do not have a copy of the FAQ, you may request a copy by email from
the Majordomo address above, ftp a copy from
- ftp://ftp.dartmouth.edu/pub/gnuplot
+ ftp://ftp.ucc.ie/pub/gnuplot/faq,
+ ftp://ftp.gnuplot.vt.edu/pub/gnuplot/faq,
or see the WWW `gnuplot` page.
When posting a question, please include full details of the version of
@@ -184,7 +185,7 @@ C
3. `set timefmt` allows for the use of dates as input and output for time
series plots. See `Time/Date data` and
-^
+^
timedat.dem.
^
@@ -214,7 +215,8 @@ C
14. The `call` command: `load` with arguments.
- 15. More flexible `range` commands with `reverse` and `writeback` keywords.
+ 15. More flexible `range` commands with `reverse`, `writeback` and 'restore'
+ keywords.
16. `set encoding` for multi-lingual encoding.
@@ -301,7 +303,7 @@ C
^K deletes from current position to the end of line.
^L,^R redraws line in case it gets trashed.
^U deletes the entire line.
- ^W deletes the last word.
+ ^W deletes from the current word to the end of line.
`History`:
@@ -388,7 +390,7 @@ C
Help - `help` plus return.
Ctrl Help - `help `.
#\begin{tabular}{|cl|} \hline
-#Arrow key & Function \\ \hline
+#Key & Function \\ \hline
#Undo & same as \verb~^L~. \\
#Home & same as \verb~^A~. \\
#Ctrl Home & same as \verb~^E~. \\
@@ -396,7 +398,7 @@ C
#Help & `{\bf help}' plus return. \\
#Ctrl Help & `{\bf help }'. \\
%c l .
-%Arrow key@Function
+%Key@Function
%_
%Undo@same as ^L.
%Home@same as ^A.
@@ -529,8 +531,8 @@ C
#\mbox{imag}(x)^{2}}}$ \\
%abs(x)@any@absolute value of $x$, $|x|$; same type
%abs(x)@complex@length of $x$, $sqrt{roman real (x) sup 2 + roman imag (x) sup 2}$
- The `abs` function returns the absolute value of its argument. The returned
- value is of the same type as the argument.
+ The `abs(x)` function returns the absolute value of its argument. The
+ returned value is of the same type as the argument.
For complex arguments, abs(x) is defined as the length of x in the complex
plane [i.e., sqrt(real(x)**2 + imag(x)**2) ].
@@ -540,24 +542,24 @@ C
?acos
#acos(x) & any & $\cos^{-1} x$ (inverse cosine) \\
%acos(x)@any@$cos sup -1 x$ (inverse cosine)
- The `acos` function returns the arc cosine (inverse cosine) of its argument.
- `acos` returns its argument in radians or degrees, as selected by `set
- angles`.
+ The `acos(x)` function returns the arc cosine (inverse cosine) of its
+ argument. `acos` returns its argument in radians or degrees, as selected by
+ `set angles`.
4 acosh
?expressions functions acosh
?functions acosh
?acosh
#acosh(x) & any & $\cosh^{-1} x$ (inverse hyperbolic cosine) in radians \\
%acosh(x)@any@$cosh sup -1 x$ (inverse hyperbolic cosine) in radians
- The `acosh` function returns the inverse hyperbolic cosine of its argument in
- radians.
+ The `acosh(x)` function returns the inverse hyperbolic cosine of its argument
+ in radians.
4 arg
?expressions functions arg
?functions arg
?arg
#arg(x) & complex & the phase of $x$ \\
%arg(x)@complex@the phase of $x$
- The `arg` function returns the phase of a complex number in radians or
+ The `arg(x)` function returns the phase of a complex number in radians or
degrees, as selected by `set angles`.
4 asin
?expressions functions asin
@@ -565,7 +567,7 @@ C
?asin
#asin(x) & any & $\sin^{-1} x$ (inverse sin) \\
%asin(x)@any@$sin sup -1 x$ (inverse sin)
- The `asin` function returns the arc sin (inverse sin) of its argument.
+ The `asin(x)` function returns the arc sin (inverse sin) of its argument.
`asin` returns its argument in radians or degrees, as selected by `set
angles`.
4 asinh
@@ -574,7 +576,7 @@ C
?asinh
#asinh(x) & any & $\sinh^{-1} x$ (inverse hyperbolic sin) in radians \\
%asinh(x)@any@$sinh sup -1 x$ (inverse hyperbolic sin) in radians
- The `asinh` function returns the inverse hyperbolic sin of its argument in
+ The `asinh(x)` function returns the inverse hyperbolic sin of its argument in
radians.
4 atan
?expressions functions atan
@@ -582,7 +584,7 @@ C
?atan
#atan(x) & any & $\tan^{-1} x$ (inverse tangent) \\
%atan(x)@any@$tan sup -1 x$ (inverse tangent)
- The `atan` function returns the arc tangent (inverse tangent) of its
+ The `atan(x)` function returns the arc tangent (inverse tangent) of its
argument. `atan` returns its argument in radians or degrees, as selected by
`set angles`.
4 atan2
@@ -591,24 +593,24 @@ C
?atan2
#atan2(y,x) & int or real & $\tan^{-1} (y/x)$ (inverse tangent) \\
%atan2(y,x)@int or real@$tan sup -1 (y/x)$ (inverse tangent)
- The `atan2` function returns the arc tangent (inverse tangent) of the ratio
- of the real parts of its arguments. `atan2` returns its argument in radians
- or degrees, as selected by `set angles`, in the correct quadrant.
+ The `atan2(y,x)` function returns the arc tangent (inverse tangent) of the
+ ratio of the real parts of its arguments. `atan2` returns its argument in
+ radians or degrees, as selected by `set angles`, in the correct quadrant.
4 atanh
?expressions functions atanh
?functions atanh
-?atan
+?atanh
#atanh(x) & any & $\tanh^{-1} x$ (inverse hyperbolic tangent) in radians \\
%atanh(x)@any@$tanh sup -1 x$ (inverse hyperbolic tangent) in radians
- The `atanh` function returns the inverse hyperbolic tangent of its argument
- in radians.
+ The `atanh(x)` function returns the inverse hyperbolic tangent of its
+ argument in radians.
4 besj0
?expressions functions besj0
?functions besj0
?besj0
#besj0(x) & int or real & $j_{0}$ Bessel function of $x$, in radians \\
%besj0(x)@int or real@$j sub 0$ Bessel function of $x$, in radians
- The `besj0` function returns the j0th Bessel function of its argument.
+ The `besj0(x)` function returns the j0th Bessel function of its argument.
`besj0` expects its argument to be in radians.
4 besj1
?expressions functions besj1
@@ -616,7 +618,7 @@ C
?besj1
#besj1(x) & int or real & $j_{1}$ Bessel function of $x$, in radians \\
%besj1(x)@int or real@$j sub 1$ Bessel function of $x$, in radians
- The `besj1` function returns the j1st Bessel function of its argument.
+ The `besj1(x)` function returns the j1st Bessel function of its argument.
`besj1` expects its argument to be in radians.
4 besy0
?expressions functions besy0
@@ -624,7 +626,7 @@ C
?besy0
#besy0(x) & int or real & $y_{0}$ Bessel function of $x$, in radians \\
%besy0(x)@int or real@$y sub 0$ Bessel function of $x$, in radians
- The `besy0` function returns the y0th Bessel function of its argument.
+ The `besy0(x)` function returns the y0th Bessel function of its argument.
`besy0` expects its argument to be in radians.
4 besy1
?expressions functions besy1
@@ -632,7 +634,7 @@ C
?besy1
#besy1(x) & int or real & $y_{1}$ Bessel function of $x$, in radians \\
%besy1(x)@int or real@$y sub 1$ Bessel function of $x$, in radians
- The `besy1` function returns the y1st Bessel function of its argument.
+ The `besy1(x)` function returns the y1st Bessel function of its argument.
`besy1` expects its argument to be in radians.
4 ceil
?expressions functions ceil
@@ -641,7 +643,7 @@ C
#ceil(x) & any & $\lceil x \rceil$, smallest integer not less than $x$
#(real part) \\
%ceil(x)@any@$left ceiling x right ceiling$, smallest integer not less than $x$ (real part)
- The `ceil` function returns the smallest integer that is not less than its
+ The `ceil(x)` function returns the smallest integer that is not less than its
argument. For complex numbers, `ceil` returns the smallest integer not less
than the real part of its argument.
4 cos
@@ -650,7 +652,7 @@ C
?cos
#cos(x) & any & $\cos x$, cosine of $x$ \\
%cos(x)@radians@$cos~x$, cosine of $x$
- The `cos` function returns the cosine of its argument. `cos` accepts its
+ The `cos(x)` function returns the cosine of its argument. `cos` accepts its
argument in radians or degrees, as selected by `set angles`.
4 cosh
?expressions functions cosh
@@ -658,7 +660,7 @@ C
?cosh
#cosh(x) & any & $\cosh x$, hyperbolic cosine of $x$ in radians \\
%cosh(x)@any@$cosh~x$, hyperbolic cosine of $x$ in radians
- The `cosh` function returns the hyperbolic cosine of its argument. `cosh`
+ The `cosh(x)` function returns the hyperbolic cosine of its argument. `cosh`
expects its argument to be in radians.
4 erf
?expressions functions erf
@@ -666,7 +668,7 @@ C
?erf
#erf(x) & any & $\mbox{erf}(\mbox{real}(x))$, error function of real($x$) \\
%erf(x)@any@$erf ( roman real (x))$, error function of real ($x$)
- The `erf` function returns the error function of the real part of its
+ The `erf(x)` function returns the error function of the real part of its
argument. If the argument is a complex value, the imaginary component is
ignored.
4 erfc
@@ -675,8 +677,8 @@ C
?erfc
#erfc(x) & any & $\mbox{erfc}(\mbox{real}(x))$, 1.0 - error function of real($x$) \\
%erfc(x)@any@$erfc ( roman real (x))$, 1.0 - error function of real ($x$)
- The `erfc` function returns 1.0 - the error function of the real part of its
- argument. If the argument is a complex value, the imaginary component is
+ The `erfc(x)` function returns 1.0 - the error function of the real part of
+ its argument. If the argument is a complex value, the imaginary component is
ignored.
4 exp
?expressions functions exp
@@ -684,7 +686,7 @@ C
?exp
#exp(x) & any & $e^{x}$, exponential function of $x$ \\
%exp(x)@any@$e sup x$, exponential function of $x$
- The `exp` function returns the exponential function of its argument (`e`
+ The `exp(x)` function returns the exponential function of its argument (`e`
raised to the power of its argument). On some implementations (notably
suns), exp(-x) returns undefined for very large x. A user-defined function
like safe(x) = x<-100 ? 0 : exp(x) might prove useful in these cases.
@@ -695,7 +697,7 @@ C
#floor(x) & any & $\lfloor x \rfloor$, largest integer not greater
#than $x$ (real part) \\
%floor(x)@any@$left floor x right floor$, largest integer not greater than $x$ (real part)
- The `floor` function returns the largest integer not greater than its
+ The `floor(x)` function returns the largest integer not greater than its
argument. For complex numbers, `floor` returns the largest integer not
greater than the real part of its argument.
4 gamma
@@ -704,7 +706,7 @@ C
?gamma
#gamma(x) & any & $\mbox{gamma}(\mbox{real}(x))$, gamma function of real($x$) \\
%gamma(x)@any@$GAMMA ( roman real (x))$, gamma function of real ($x$)
- The `gamma` function returns the gamma function of the real part of its
+ The `gamma(x)` function returns the gamma function of the real part of its
argument. For integer n, gamma(n+1) = n!. If the argument is a complex
value, the imaginary component is ignored.
4 ibeta
@@ -713,16 +715,16 @@ C
?ibeta
#ibeta(p,q,x) & any & $\mbox{ibeta}(\mbox{real}(p,q,x))$, ibeta function of real($p$,$q$,$x$) \\
%ibeta(p,q,x)@any@$ibeta ( roman real (p,q,x))$, ibeta function of real ($p$,$q$,$x$)
- The `ibeta` function returns the incomplete beta function of the real parts
- of its arguments. p, q > 0 and x in [0:1]. If the arguments are complex,
- the imaginary components are ignored.
+ The `ibeta(p,q,x)` function returns the incomplete beta function of the real
+ parts of its arguments. p, q > 0 and x in [0:1]. If the arguments are
+ complex, the imaginary components are ignored.
4 inverf
?expressions functions inverf
?functions inverf
?inverf
#inverf(x) & any & inverse error function of real($x$) \\
%inverf(x)@any@inverse error function real($x$)
- The `inverf` function returns the inverse error function of the real part
+ The `inverf(x)` function returns the inverse error function of the real part
of its argument.
4 igamma
?expressions functions igamma
@@ -730,7 +732,7 @@ C
?igamma
#igamma(a,x) & any & $\mbox{igamma}(\mbox{real}(a,x))$, igamma function of real($a$,$x$) \\
%igamma(a,x)@any@$igamma ( roman real (a,x))$, igamma function of real ($a$,$x$)
- The `igamma` function returns the incomplete gamma function of the real
+ The `igamma(a,x)` function returns the incomplete gamma function of the real
parts of its arguments. a > 0 and x >= 0. If the arguments are complex,
the imaginary components are ignored.
4 imag
@@ -739,7 +741,7 @@ C
?imag
#imag(x) & complex & imaginary part of $x$ as a real number \\
%imag(x)@complex@imaginary part of $x$ as a real number
- The `imag` function returns the imaginary part of its argument as a real
+ The `imag(x)` function returns the imaginary part of its argument as a real
number.
4 invnorm
?expressions functions invnorm
@@ -747,7 +749,7 @@ C
?invnorm
#invnorm(x) & any & inverse normal distribution function of real($x$) \\
%invnorm(x)@any@inverse normal distribution function real($x$)
- The `invnorm` function returns the inverse normal distribution function of
+ The `invnorm(x)` function returns the inverse normal distribution function of
the real part of its argument.
4 int
?expressions functions int
@@ -755,7 +757,7 @@ C
?int
#int(x) & real & integer part of $x$, truncated toward zero \\
%int(x)@real@integer part of $x$, truncated toward zero
- The `int` function returns the integer part of its argument, truncated
+ The `int(x)` function returns the integer part of its argument, truncated
toward zero.
4 lgamma
?expressions functions lgamma
@@ -763,7 +765,7 @@ C
?lgamma
#lgamma(x) & any & $\mbox{lgamma}(\mbox{real}(x))$, lgamma function of real($x$) \\
%lgamma(x)@any@$lgamma ( roman real (x))$, lgamma function of real ($x$)
- The `lgamma` function returns the natural logarithm of the gamma function
+ The `lgamma(x)` function returns the natural logarithm of the gamma function
of the real part of its argument. If the argument is a complex value, the
imaginary component is ignored.
4 log
@@ -772,21 +774,22 @@ C
?log
#log(x) & any & $\log_{e} x$, natural logarithm (base $e$) of $x$ \\
%log(x)@any@$ln~x$, natural logarithm (base $e$) of $x$
- The `log` function returns the natural logarithm (base `e`) of its argument.
+ The `log(x)` function returns the natural logarithm (base `e`) of its
+ argument.
4 log10
?expressions functions log10
?functions log10
?log10
#log10(x) & any & $\log_{10} x$, logarithm (base $10$) of $x$ \\
%log10(x)@any@${log sub 10}~x$, logarithm (base $10$) of $x$
- The `log10` function returns the logarithm (base 10) of its argument.
+ The `log10(x)` function returns the logarithm (base 10) of its argument.
4 norm
?expressions functions norm
?functions norm
?norm
#norm(x) & any & normal distribution (Gaussian) function of real($x$) \\
%norm(x)@any@$norm(x)$, normal distribution function of real($x$)
- The `norm` function returns the normal distribution function (or Gaussian)
+ The `norm(x)` function returns the normal distribution function (or Gaussian)
of the real part of its argument.
4 rand
?expressions functions rand
@@ -794,7 +797,7 @@ C
?rand
#rand(x) & any & $\mbox{rand}(\mbox{real}(x))$, pseudo random number generator \\
%rand(x)@any@$rand ( roman real (x))$, pseudo random number generator
- The `rand` function returns a pseudo random number in the interval [0:1]
+ The `rand(x)` function returns a pseudo random number in the interval [0:1]
using the real part of its argument as a seed. If seed < 0, the sequence
is (re)initialized. If the argument is a complex value, the imaginary
component is ignored.
@@ -804,31 +807,31 @@ C
?real
#real(x) & any & real part of $x$ \\
%real(x)@any@real part of $x$
- The `real` function returns the real part of its argument.
+ The `real(x)` function returns the real part of its argument.
4 sgn
?expressions functions sgn
?functions sgn
?sgn
#sgn(x) & any & 1 if $x>0$, -1 if $x<0$, 0 if $x=0$. imag($x$) ignored \\
%sgn(x)@any@1 if $x > 0$, -1 if $x < 0$, 0 if $x = 0$. $roman imag (x)$ ignored
- The `sgn` function returns 1 if its argument is positive, -1 if its argument
- is negative, and 0 if its argument is 0. If the argument is a complex value,
- the imaginary component is ignored.
+ The `sgn(x)` function returns 1 if its argument is positive, -1 if its
+ argument is negative, and 0 if its argument is 0. If the argument is a
+ complex value, the imaginary component is ignored.
4 sin
?expressions functions sin
?functions sin
?sin
#sin(x) & any & $\sin x$, sine of $x$ \\
%sin(x)@any@$sin~x$, sine of $x$
- The `sin` function returns the sine of its argument. `sin` expects its
+ The `sin(x)` function returns the sine of its argument. `sin` expects its
argument to be in radians or degrees, as selected by `set angles`.
4 sinh
?expressions functions sinh
?functions sinh
?sinh
-#sinh(x) & any & $\sinh x$, hyperbolic sine $x$ in radians \\
-%sinh(x)@any@$sinh~x$, hyperbolic sine $x$ in radians
- The `sinh` function returns the hyperbolic sine of its argument. `sinh`
+#sinh(x) & any & $\sinh x$, hyperbolic sine of $x$ in radians \\
+%sinh(x)@any@$sinh~x$, hyperbolic sine of $x$ in radians
+ The `sinh(x)` function returns the hyperbolic sine of its argument. `sinh`
expects its argument to be in radians.
4 sqrt
?expressions functions sqrt
@@ -836,14 +839,14 @@ C
?sqrt
#sqrt(x) & any & $\sqrt{x}$, square root of $x$ \\
%sqrt(x)@any@$sqrt x $, square root of $x$
- The `sqrt` function returns the square root of its argument.
+ The `sqrt(x)` function returns the square root of its argument.
4 tan
?expressions functions tan
?functions tan
?tan
#tan(x) & any & $\tan x$, tangent of $x$ \\
%tan(x)@any@$tan~x$, tangent of $x$
- The `tan` function returns the tangent of its argument. `tan` expects
+ The `tan(x)` function returns the tangent of its argument. `tan` expects
its argument to be in radians or degrees, as selected by `set angles`.
4 tanh
?expressions functions tanh
@@ -851,7 +854,7 @@ C
?tanh
#tanh(x) & any & $\tanh x$, hyperbolic tangent of $x$ in radians\\
%tanh(x)@any@$tanh~x$, hyperbolic tangent of $x$ in radians
- The `tanh` function returns the hyperbolic tangent of its argument. `tanh`
+ The `tanh(x)` function returns the hyperbolic tangent of its argument. `tanh`
expects its argument to be in radians.
@end table
@@ -940,7 +943,7 @@ C
`valid(x)` may be used only in expressions as part of `using` manipulations
to fits or datafile plots. See `plot datafile using`.
@end table
-^ Use of functions and complex variables for airfoils
+^ Use of functions and complex variables for airfoils
3 Operators
?expressions operators
?operators
@@ -1255,7 +1258,7 @@ C ... and restart the table:
blanks.
Command-line substitution can be used anywhere on the `gnuplot` command
- line.
+ line, except inside strings delimited by single quotes.
Example:
@@ -1265,6 +1268,11 @@ C ... and restart the table:
or, in VMS
f(x) = `run leastsq`
+
+ These will generate labels with the current time and userid:
+ set label "generated on `date +%Y-%m-%d`by `whoami`" at 1,1
+ set timestamp "generated on %Y-%m-%d by `whoami`"
+
2 Syntax
?syntax
?specify
@@ -1577,7 +1585,7 @@ C ... and restart the table:
parameter file. The two use different means to set initial values.
Adjustable parameters can be specified by a comma-separated list of variable
- names after the `via` keyword. Any variable that is not already defined is
+ names after the `via` keyword. Any variable that is not already defined
is created with an initial value of 1.0. However, the fit is more likely
to converge rapidly if the variables have been previously declared with more
appropriate starting values.
@@ -1828,7 +1836,7 @@ C ... and restart the table:
Setting FIT_LAMBDA_FACTOR to zero re-enables the default factor of
10.0.
- Oher variables with the FIT_ prefix may be added to `fit`, so it is safer
+ Other variables with the FIT_ prefix may be added to `fit`, so it is safer
not to use that prefix for user-defined variables.
The variables FIT_SKIP and FIT_INDEX were used by earlier releases of
@@ -2202,7 +2210,7 @@ C ... and restart the table:
every :::::9 # selects the first 10 blocks
every 2:2 # selects every other point in every other block
every ::5::15 # selects points 5 through 15 in each block
-^ Simple Plot Demos ,
+^ Simple Plot Demos ,
^ Non-parametric splot demos , and
^ Parametric splot demos.
4 example datafile
@@ -2250,7 +2258,7 @@ C ... and restart the table:
Example:
plot 'file' index 4:5
-^ splot with indices demo.
+^ splot with indices demo.
4 smooth
?commands plot datafile smooth
?plot datafile smooth
@@ -2357,7 +2365,7 @@ C ... and restart the table:
The `unique` option makes the data monotonic in x; points with the same
x-value are replaced by a single point having the average y-value. The
resulting points are then connected by straight line segments.
-^ See demos.
+^ See demos.
4 special-filenames
?commands plot datafile special-filenames
?plot datafile special-filenames
@@ -2570,7 +2578,7 @@ C ... and restart the table:
However, if you want to leave text in your data files, it is safer to put the
comment character (#) in the first column of the text lines.
-^ Feeble using demos.
+^ Feeble using demos.
3 errorbars
?commands plot errorbars
?commands splot errorbars
@@ -2642,7 +2650,7 @@ C ... and restart the table:
parametric function has been completed:
plot sin(t),t**2 title 'Parametric example' with linespoints
-^ Parametric Mode Demos.
+^ Parametric Mode Demos.
3 ranges
?commands plot ranges
?commands splot ranges
@@ -2821,7 +2829,7 @@ C ... and restart the table:
plot sin(x) with impulses
This plots x with points, x**2 with the default:
- plot x*y w points, x**2 + y**2
+ plot x w points, x**2
This plots tan(x) with the default function style, file "data.1" with lines:
plot [ ] [-2:5] tan(x), 'data.1' with l
@@ -2939,7 +2947,7 @@ C ... and restart the table:
set explicitly to guarantee that the five separate graphs (drawn on top of
each other in multiplot mode) will have exactly the same axes. The linetype
must be specified; otherwise all the plots would be drawn with the same type.
-^ Reread Animation Demo
+^ Reread Animation Demo
2 reset
?commands reset
?reset
@@ -3029,7 +3037,7 @@ C ... and restart the table:
y=sinh(x)
print y #prints {1.16933, 0.154051}
print asinh(y) #prints {57.29578, 5.729578}
-^ Polar plot using `set angles`.
+^ Polar plot using `set angles`.
3 arrow
?commands set arrow
?commands set noarrow
@@ -3216,7 +3224,7 @@ C ... and restart the table:
Explicitly setting one or two ranges but not others may lead to unexpected
results.
-^ See polar demos
+^ See polar demos
3 bar
?commands set bar
?commands show bar
@@ -3292,7 +3300,10 @@ C ... and restart the table:
Using the optional , and
specifiers, the way the border lines are drawn can be influenced
- (limited by what the current terminal driver supports).
+ (limited by what the current terminal driver supports). By default,
+ the border is drawn with twice the usual linewidth. The
+ specifier scales this default value; for example, `set border 15 lw 2`
+ will produce a border with four times the usual linewidth.
Various axes or combinations of axes may be added together in the command.
@@ -3513,8 +3524,8 @@ C ... and restart the table:
See also `set contour` for control of where the contours are drawn, and `set
clabel` for control of the format of the contour labels and linetypes.
-^ Contours Demo and
-^ contours with User Defined Levels.
+^ Contours Demo and
+^ contours with User Defined Levels.
3 contour
?commands set contour
?commands set nocontour
@@ -3564,8 +3575,8 @@ C ... and restart the table:
If contours are desired from non-grid data, `set dgrid3d` can be used to
create an appropriate grid. See `set dgrid3d` for more information.
-^ Contours Demo and
-^ contours with User Defined Levels.
+^ Contours Demo and
+^ contours with User Defined Levels.
3 data style
?commands set data style
?commands show data style
@@ -3641,7 +3652,7 @@ C ... and restart the table:
The first specifies that a grid of size 10 by 10 is to be constructed using
a norm value of 1 in the weight computation. The second only modifies the
norm, changing it to 4.
-^ Dgrid3d Demo.
+^ Dgrid3d Demo.
3 dummy
?commands set dummy
@@ -3727,7 +3738,7 @@ C ... and restart the table:
after each number. If you want "%" itself, double it: "%g %%".
See also `set xtics` for more information about tic labels.
-^ See demo.
+^ See demo.
4 format specifiers
?commands set format specifiers
?set format specifiers
@@ -3846,7 +3857,7 @@ C ... and restart the table:
%M minute, 0--60
%p "am" or "pm"
%r shorthand for "%I:%M:%S %p"
- %R shorthand for %H:%M"
+ %R shorthand for "%H:%M"
%S second, 0--60
%T shorthand for "%H:%M:%S"
%U week of the year (week starts on Sunday)
@@ -3948,8 +3959,8 @@ C ... and restart the table:
For information about the definition and usage of functions in `gnuplot`,
please see `expressions`.
-^ Splines as User Defined Functions.
-^ Use of functions and complex variables for airfoils
+^ Splines as User Defined Functions.
+^ Use of functions and complex variables for airfoils
3 grid
?commands set grid
?commands set nogrid
@@ -3992,6 +4003,10 @@ C ... and restart the table:
If no linetype is specified for the minor gridlines, the same linetype as the
major gridlines is used. The default polar angle is 30 degrees.
+ By default, grid lines are drawn with half the usual linewidth. The major and
+ minor linewidth specifiers scale this default value; for example, `set grid
+ lw .5` will draw grid lines with one quarter the usual linewidth.
+
Z grid lines are drawn on the back of the plot. This looks better if a
partial box is drawn around the plot---see `set border`.
3 hidden3d
@@ -4100,8 +4115,8 @@ C ... and restart the table:
normally, making the resulting display hard to understand. Therefore, the
default option of `bentover` will turn it visible in this case. If you don't
want that, you may choose `nobentover` instead.
-^ Hidden Line Removal Demo and
-^ Complex Hidden Line Demo.
+^ Hidden Line Removal Demo and
+^ Complex Hidden Line Demo.
3 isosamples
?commands set isosamples
?commands show isosamples
@@ -4456,7 +4471,7 @@ C ... and restart the table:
A cartesian coordinate system is used by default.
For a spherical coordinate system, the data occupy two or three columns (or
- `using` entries). The first two are interpreted as the polar and azimuthal
+ `using` entries). The first two are interpreted as the azimuthal and polar
angles theta and phi (in the units specified by `set angles`). The radius r
is taken from the third column if there is one, or is set to unity if there
is no third column. The mapping is:
@@ -4482,17 +4497,15 @@ C ... and restart the table:
necessary if the data in the file are not in the required order.
`mapping` has no effect on `plot`.
-^ Mapping Demos.
+^ Mapping Demos.
3 margin
?commands set margin
?commands show margin
?set margin
?show margin
?margin
- Normally the margins of a plot are automatically calculated based on tics
- and axis labels (and the size of the graph correspondingly adjusted.) These
- computed values can be overridden by the `set margin` commands. `show margin`
- shows the current settings.
+ The computed margins can be overridden by the `set margin` commands. `show
+ margin` shows the current settings.
Syntax:
set bmargin {}
@@ -4504,6 +4517,14 @@ C ... and restart the table:
The units of are character heights or widths, as appropriate. A
positive value defines the absolute size of the margin. A negative value
(or none) causes `gnuplot` to revert to the computed value.
+
+ Normally the margins of a plot are automatically calculated based on tics,
+ tic labels, axis labels, the plot title, the timestamp and the size of the
+ key if it is outside the borders. If, however, tics are attached to the
+ axes (`set xtics axis`, for example), neither the tics themselves nor their
+ labels will be included in either the margin calculation or the calculation
+ of the positions of other text to be written in the margin. This can lead
+ to tic labels overwriting other text if the axis is very close to the border.
3 missing
?commands set missing
?set missing
@@ -4583,7 +4604,7 @@ C ... and restart the table:
in character units, so the appearance of the graph in the remaining space
will depend on the screen size of the display device, e.g., perhaps quite
different on a video display and a printer.
-^ See demo.
+^ See demo.
3 mx2tics
?commands set mx2tics
?commands set nomx2tics
@@ -4876,8 +4897,8 @@ C ... and restart the table:
You may want to `set size square` to have `gnuplot` try to make the aspect
ratio equal to unity, so that circles look circular.
-^ Polar demos
-^ Polar Data Plot.
+^ Polar demos
+^ Polar Data Plot.
3 rmargin
?commands set rmargin
?set rmargin
@@ -4975,7 +4996,7 @@ C ... and restart the table:
To make the graph twice as high as wide use:
set size ratio 2
-^ See demo.
+^ See demo.
3 style
?commands set function style
?commands show function style
@@ -5126,7 +5147,7 @@ C ... and restart the table:
The `fsteps` style is only relevant to 2-d plotting. It connects consecutive
points with two line segments: the first from (x1,y1) to (x1,y2) and the
second from (x1,y2) to (x2,y2).
-^ See demo.
+^ See demo.
4 histeps
?commands set style histeps
?set style histeps
@@ -5141,7 +5162,7 @@ C ... and restart the table:
If `autoscale` is in effect, it selects the xrange from the data rather than
the steps, so the end points will appear only half as wide as the others.
-^ See demo.
+^ See demo.
`histeps` is only a plotting style; `gnuplot` does not have the ability to
create bins and determine their population from some data set.
@@ -5189,7 +5210,7 @@ C ... and restart the table:
The `steps` style is only relevant to 2-d plotting. It connects consecutive
points with two line segments: the first from (x1,y1) to (x2,y1) and the
second from (x2,y1) to (x2,y2).
-^ See demo.
+^ See demo.
4 vector
?commands set style vector
?set style vector
@@ -5199,8 +5220,8 @@ C ... and restart the table:
it requires four columns of data. It also draws a small arrowhead at the
end of the vector.
- The `vector` style is still experimental: it doesn't get clipped properly
- and other things may also be wrong with it. Use it at your own risk.
+ `set clip one` and `set clip two` affect drawing vectors.
+ Please see `set clip`.
4 xerrorbars
?commands set style xerrorbars
?set style xerrorbars
@@ -5229,7 +5250,7 @@ C ... and restart the table:
`plot` command should be used to set up the appropriate form. For example,
if the data are of the form (x,y,xdelta,ylow,yhigh), then you can use
- plot 'data' using 1:2:($1-$3),($1+$3),4,5 with xyerrorbars
+ plot 'data' using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars
4 yerrorbars
?commands set style yerrorbars
?commands set style errorbars
@@ -5266,7 +5287,7 @@ C ... and restart the table:
appropriate style, data or function.
Whenever `set nosurface` is issued, `splot` will not draw points or lines
- corresponding to the function or data file points. Contours may be still be
+ corresponding to the function or data file points. Contours may still be
drawn on the surface, depending on the `set contour` option. `set nosurface;
set contour base` is useful for displaying contours on the grid base. See
also `set contour`.
@@ -5378,7 +5399,7 @@ C ... and restart the table:
year). With `top` or `bottom` you can place the timestamp at the top or
bottom of the left margin (default: bottom). `rotate` lets you write the
timestamp vertically, if your terminal supports vertical text. The constants
- and are offsets from the default position given in character
+ and are offsets from the default position given in character
screen coordinates. is used to specify the font with which the time
is to be written.
@@ -5413,6 +5434,7 @@ C ... and restart the table:
%j day of the year, 1--365
%H hour, 0--24
%M minute, 0--60
+ %s seconds since the Unix epoch (1970-01-01, 00:00 UTC)
%S second, 0--60
%b three-character abbreviation of the name of the month
%B name of the month
@@ -5427,6 +5449,7 @@ C ... and restart the table:
#\verb@%j@ & day of the year, 1--365 \\
#\verb@%H@ & hour, 0--24 \\
#\verb@%M@ & minute, 0--60 \\
+#\verb@%s@ & seconds since the Unix epoch (1970-01-01 00:00 UTC) \\
#\verb@%S@ & second, 0--60 \\
#\verb@%b@ & three-character abbreviation of the name of the month \\
#\verb@%B@ & name of the month \\
@@ -5440,6 +5463,7 @@ C ... and restart the table:
%%j@day of the year, 1--365
%%H@hour, 0--24
%%M@minute, 0--60
+%%s@seconds since the Unix epoch (1970-01-01 00:00 UTC)
%%S@second, 0--60
%%b@three-character abbreviation of the name of the month
%%B@name of the month
@@ -5474,7 +5498,7 @@ C ... and restart the table:
tells `gnuplot` to read date and time separated by tab. (But look closely at
your data---what began as a tab may have been converted to spaces somewhere
along the line; the format string must match what is actually in the file.)
-^ Time Data Demo
+^ Time Data Demo
3 title
?commands set title
?commands show title
@@ -5679,7 +5703,7 @@ C ... and restart the table:
See `set timefmt` to tell `gnuplot` how to read date or time data. The
time/date is converted to seconds from start of the century. There is
currently only one timefmt, which implies that all the time/date columns must
- confirm to this format. Specification of ranges should be supplied as quoted
+ conform to this format. Specification of ranges should be supplied as quoted
strings according to this format to avoid interpretation of the time/date as
an expression.
@@ -5777,7 +5801,7 @@ C ... and restart the table:
label` instead--that command gives you much more control over where text is
placed.
- Please see `set syntax` for further information about backslash processing
+ Please see `syntax` for further information about backslash processing
and the difference between single- and double-quoted strings.
3 xmtics
?commands set xmtics
@@ -5788,7 +5812,7 @@ C ... and restart the table:
?show xmtics
?xmtics
?noxmtics
- The `set xmtics` commands converts the x-axis tic marks to months of the
+ The `set xmtics` command converts the x-axis tic marks to months of the
year where 1=Jan and 12=Dec. Overflows are converted modulo 12 to months.
The tics are returned to their default labels by `set noxmtics`. Similar
commands perform the same duties for the other axes.
@@ -5806,13 +5830,16 @@ C ... and restart the table:
?commands show xrange
?set xrange
?show xrange
+?writeback
+?restore
?xrange
The `set xrange` command sets the horizontal range that will be displayed.
A similar command exists for each of the other axes, as well as for the
polar radius r and the parametric variables t, u, and v.
Syntax:
- set xrange [{{}:{}}] {{no}reverse} {{no}writeback}
+ set xrange { [{{}:{}}] {{no}reverse} {{no}writeback} }
+ | restore
show xrange
where and terms are constants, expressions or an asterisk to set
@@ -5832,12 +5859,13 @@ C ... and restart the table:
the buffers that would be filled by `set xrange`. This is useful if you wish
to plot several functions together but have the range determined by only
some of them. The `writeback` operation is performed during the `plot`
- execution, so it must be specified before that command. For example,
+ execution, so it must be specified before that command. To restore
+ the last saved horizontal range use `set xrange restore`. For example,
set xrange [-10:10]
set yrange [] writeback
plot sin(x)
- set noautoscale y
+ set yrange restore
replot x/2
results in a yrange of [-1:1] as found only from the range of sin(x); the
@@ -5903,21 +5931,27 @@ C ... and restart the table:
The same syntax applies to `ytics`, `ztics`, `x2tics` and `y2tics`.
`axis` or `border` tells `gnuplot` to put the tics (both the tics themselves
- and the accompanying labels) along the axis or the border, respectively.
- `mirror` tells it to put unlabelled tics at the same positions on the
- opposite border. `nomirror` does what you think it does. `rotate` asks
- `gnuplot` to rotate the text through 90 degrees, if the underlying terminal
- driver supports text rotation. `norotate` cancels this. The defaults are
- `border mirror norotate` for tics on the x and y axes, and `border nomirror
- norotate` for tics on the x2 and y2 axes. For the z axis, the the `{axis |
- border}` option is not available and the default is `nomirror`. If you do
- want to mirror the z-axis tics, you might want to create a bit more room for
- them with `set border`.
+ and the accompanying labels) along the axis or the border, respectively. If
+ the axis is very close to the border, the `axis` option can result in tic
+ labels overwriting other text written in the margin.
- `set xtics` with no options restores the default border if xtics are not
- being displayed; otherwise it has no effect. Any previously specified
- tic frequency or position {and labels} are retained.
+ `mirror` tells `gnuplot` to put unlabelled tics at the same positions on the
+ opposite border. `nomirror` does what you think it does.
+ `rotate` asks `gnuplot` to rotate the text through 90 degrees, which will be
+ done if the terminal driver in use supports text rotation. `norotate`
+ cancels this.
+
+ The defaults are `border mirror norotate` for tics on the x and y axes, and
+ `border nomirror norotate` for tics on the x2 and y2 axes. For the z axis,
+ the `{axis | border}` option is not available and the default is
+ `nomirror`. If you do want to mirror the z-axis tics, you might want to
+ create a bit more room for them with `set border`.
+
+ `set xtics` with no options restores the default border or axis if xtics are
+ being displayed; otherwise it has no effect. Any previously specified tic
+ frequency or position {and labels} are retained.
+
Positions of the tics are calculated automatically by default or if the
`autofreq` option is given; otherwise they may be specified in either of
two forms:
@@ -5927,7 +5961,7 @@ C ... and restart the table:
of . If is not given, it is assumed to be infinity. The
increment may be negative. If neither nor is given, is
assumed to be negative infinity, is assumed to be positive infinity,
- and the tics will be drawn at integral multiples of . If the axis is
+ and the tics will be drawn at integral multiples of . If the axis is
logarithmic, the increment will be used as a multiplicative factor.
Examples:
@@ -5939,7 +5973,7 @@ C ... and restart the table:
set xtics 5
Make tics at 1, 100, 1e4, 1e6, 1e8.
- set logscale x; set xtics 1,100,10e8
+ set logscale x; set xtics 1,100,1e8
The explicit ("