=================================================================== RCS file: /home/cvs/OpenXM_contrib/gmp/mpfr/Attic/exp.c,v retrieving revision 1.1.1.1 retrieving revision 1.1.1.2 diff -u -p -r1.1.1.1 -r1.1.1.2 --- OpenXM_contrib/gmp/mpfr/Attic/exp.c 2000/09/09 14:12:19 1.1.1.1 +++ OpenXM_contrib/gmp/mpfr/Attic/exp.c 2003/08/25 16:06:07 1.1.1.2 @@ -1,176 +1,106 @@ /* mpfr_exp -- exponential of a floating-point number -Copyright (C) 1999 PolKA project, Inria Lorraine and Loria +Copyright 1999, 2000, 2001, 2002 Free Software Foundation. +Contributed by the Spaces project. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify -it under the terms of the GNU Library General Public License as published by -the Free Software Foundation; either version 2 of the License, or (at your +it under the terms of the GNU Lesser General Public License as published by +the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public +or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. -You should have received a copy of the GNU Library General Public License +You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include -#include #include "gmp.h" #include "gmp-impl.h" #include "mpfr.h" +#include "mpfr-impl.h" /* #define DEBUG */ -#define LOG2 0.69314718055994528622 /* log(2) rounded to zero on 53 bits */ - /* use Brent's formula exp(x) = (1+r+r^2/2!+r^3/3!+...)^(2^K)*2^n where x = n*log(2)+(2^K)*r number of operations = O(K+prec(r)/K) */ int -#if __STDC__ -mpfr_exp(mpfr_ptr y, mpfr_srcptr x, unsigned char rnd_mode) -#else -mpfr_exp(y, x, rnd_mode) - mpfr_ptr y; - mpfr_srcptr x; - unsigned char rnd_mode; -#endif +mpfr_exp (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) { - int n, expx, K, precy, q, k, l, expr, err; - mpfr_t r, s, t; + int expx, precy; + double d; - if (FLAG_NAN(x)) { SET_NAN(y); return 1; } - if (!NOTZERO(x)) { mpfr_set_ui(y, 1, GMP_RNDN); return 0; } + if (MPFR_IS_NAN(x)) + { + MPFR_SET_NAN(y); + MPFR_RET_NAN; + } - expx = EXP(x); - precy = PREC(y); -#ifdef DEBUG - printf("EXP(x)=%d\n",expx); -#endif + MPFR_CLEAR_NAN(y); - /* if x > (2^31-1)*ln(2), then exp(x) > 2^(2^31-1) i.e. gives +infinity */ - if (expx > 30) { - if (SIGN(x)>0) { printf("+infinity"); return 1; } - else { SET_ZERO(y); return 1; } - } + if (MPFR_IS_INF(x)) + { + if (MPFR_SIGN(x) > 0) + { + MPFR_SET_INF(y); + } + else + { + MPFR_CLEAR_INF(y); + MPFR_SET_ZERO(y); + } + MPFR_SET_POS(y); + MPFR_RET(0); + } - /* if x < 2^(-precy), then exp(x) i.e. gives 1 +/- 1 ulp(1) */ - if (expx < -precy) { int signx = SIGN(x); - mpfr_set_ui(y, 1, rnd_mode); - if (signx>0 && rnd_mode==GMP_RNDU) mpfr_add_one_ulp(y); - else if (signx<0 && (rnd_mode==GMP_RNDD || rnd_mode==GMP_RNDZ)) - mpfr_sub_one_ulp(y); - return 1; } + MPFR_CLEAR_INF(y); - n = (int) floor(mpfr_get_d(x)/LOG2); + if (MPFR_IS_ZERO(x)) + return mpfr_set_ui (y, 1, GMP_RNDN); - K = (int) sqrt( (double) precy ); - l = (precy-1)/K + 1; - err = K + (int) ceil(log(2.0*(double)l+18.0)/LOG2); - /* add K extra bits, i.e. failure probability <= 1/2^K = O(1/precy) */ - q = precy + err + K + 3; - mpfr_init2(r, q); mpfr_init2(s, q); mpfr_init2(t, q); - /* the algorithm consists in computing an upper bound of exp(x) using - a precision of q bits, and see if we can round to PREC(y) taking - into account the maximal error. Otherwise we increase q. */ - do { -#ifdef DEBUG - printf("n=%d K=%d l=%d q=%d\n",n,K,l,q); -#endif + expx = MPFR_EXP(x); + precy = MPFR_PREC(y); - /* if n<0, we have to get an upper bound of log(2) - in order to get an upper bound of r = x-n*log(2) */ - mpfr_log2(s, (n>=0) ? GMP_RNDZ : GMP_RNDU); -#ifdef DEBUG - printf("n=%d log(2)=",n); mpfr_print_raw(s); putchar('\n'); -#endif - mpfr_mul_ui(r, s, (n<0) ? -n : n, (n>=0) ? GMP_RNDZ : GMP_RNDU); - if (n<0) mpfr_neg(r, r, GMP_RNDD); - /* r = floor(n*log(2)) */ + /* result is +Inf when exp(x) >= 2^(__mpfr_emax), i.e. + x >= __mpfr_emax * log(2) */ + d = mpfr_get_d1 (x); + if (d >= (double) __mpfr_emax * LOG2) + return mpfr_set_overflow(y, rnd_mode, 1); -#ifdef DEBUG - printf("x=%1.20e\n",mpfr_get_d(x)); - printf(" ="); mpfr_print_raw(x); putchar('\n'); - printf("r=%1.20e\n",mpfr_get_d(r)); - printf(" ="); mpfr_print_raw(r); putchar('\n'); -#endif - mpfr_sub(r, x, r, GMP_RNDU); - if (SIGN(r)<0) { /* initial approximation n was too large */ - n--; - mpfr_mul_ui(r, s, (n<0) ? -n : n, GMP_RNDZ); - if (n<0) mpfr_neg(r, r, GMP_RNDD); - mpfr_sub(r, x, r, GMP_RNDU); - } -#ifdef DEBUG - printf("x-r=%1.20e\n",mpfr_get_d(r)); - printf(" ="); mpfr_print_raw(r); putchar('\n'); - if (SIGN(r)<0) { fprintf(stderr,"Error in mpfr_exp: r<0\n"); exit(1); } -#endif - mpfr_div_2exp(r, r, K, GMP_RNDU); /* r = (x-n*log(2))/2^K */ - mpfr_set_ui(s, 1, GMP_RNDU); - mpfr_set_ui(t, 1, GMP_RNDU); + /* result is 0 when exp(x) < 1/2*2^(__mpfr_emin), i.e. + x < (__mpfr_emin-1) * LOG2 */ + if (d < ((double) __mpfr_emin - 1.0) * LOG2) + return mpfr_set_underflow(y, rnd_mode, 1); - l = 1; expr = EXP(r); - do { - mpfr_mul(t, t, r, GMP_RNDU); - mpfr_div_ui(t, t, l, GMP_RNDU); - mpfr_add(s, s, t, GMP_RNDU); -#ifdef DEBUG - printf("l=%d t=%1.20e\n",l,mpfr_get_d(t)); - printf("s=%1.20e\n",mpfr_get_d(s)); -#endif - l++; - } while (EXP(t)+expr > -q); -#ifdef DEBUG - printf("l=%d q=%d (K+l)*q^2=%1.3e\n", l, q, (K+l)*(double)q*q); -#endif + /* if x < 2^(-precy), then exp(x) i.e. gives 1 +/- 1 ulp(1) */ + if (expx < -precy) + { + int signx = MPFR_SIGN(x); - /* add 2 ulp to take into account rest of summation */ - mpfr_add_one_ulp(s); - mpfr_add_one_ulp(s); - - for (k=0;k 0 && rnd_mode == GMP_RNDU) + { + mpfr_add_one_ulp (y, rnd_mode); + return 1; + } + else if (signx < 0 && (rnd_mode == GMP_RNDD || rnd_mode == GMP_RNDZ)) + { + mpfr_sub_one_ulp (y, rnd_mode); + return -1; + } + return -signx; + } - if (n>0) mpfr_mul_2exp(s, s, n, GMP_RNDU); - else mpfr_div_2exp(s, s, -n, GMP_RNDU); - - /* error is at most 2^K*(2l+18) ulp */ - l = 2*l+17; k=0; while (l) { k++; l >>= 1; } - /* now k = ceil(log(2l+18)/log(2)) */ - K += k; -#ifdef DEBUG - printf("after mult. by 2^n:\n"); - if (EXP(s)>-1024) printf("s=%1.20e\n",mpfr_get_d(s)); - printf(" ="); mpfr_print_raw(s); putchar('\n'); - printf("err=%d bits\n", K); -#endif - - l = mpfr_can_round(s, q-K, GMP_RNDU, rnd_mode, precy); - if (l==0) { -#ifdef DEBUG - printf("not enough precision, use %d\n", q+BITS_PER_MP_LIMB); - printf("q=%d q-K=%d precy=%d\n",q,q-K,precy); -#endif - q += BITS_PER_MP_LIMB; - mpfr_set_prec(r, q); mpfr_set_prec(s, q); mpfr_set_prec(t, q); - } - } while (l==0); - - mpfr_set(y, s, rnd_mode); - - mpfr_clear(r); mpfr_clear(s); mpfr_clear(t); - return 1; + if (precy > 13000) + return mpfr_exp3 (y, x, rnd_mode); /* O(M(n) log(n)^2) */ + else + return mpfr_exp_2 (y, x, rnd_mode); /* O(n^(1/3) M(n)) */ } -