version 1.18, 2003/08/22 11:47:03 |
version 1.21, 2003/08/26 07:42:52 |
|
|
/* $OpenXM: OpenXM/src/kan96xx/Kan/usage.c,v 1.17 2003/08/21 04:45:40 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/kan96xx/Kan/usage.c,v 1.20 2003/08/24 05:19:43 takayama Exp $ */ |
#include <stdio.h> |
#include <stdio.h> |
#include "datatype.h" |
#include "datatype.h" |
#include "stackm.h" |
#include "stackm.h" |
Line 177 void Kusage2(fp,s) |
|
Line 177 void Kusage2(fp,s) |
|
fppp(fp," [(isReducible) poly1 poly2 ] gbext integer \n"); |
fppp(fp," [(isReducible) poly1 poly2 ] gbext integer \n"); |
fppp(fp," [(lcm) poly1 poly2] gbext poly \n"); |
fppp(fp," [(lcm) poly1 poly2] gbext poly \n"); |
fppp(fp," [(grade) poly1 ] gbext integer \n"); |
fppp(fp," [(grade) poly1 ] gbext integer \n"); |
|
fppp(fp," [(ord_ws_all) fv wv] gbext integer \n"); |
fppp(fp," [(mod) poly1 universalNumber] gbext poly \n"); |
fppp(fp," [(mod) poly1 universalNumber] gbext poly \n"); |
fppp(fp," poly = poly1 mod universalNumber where char=0 and \n"); |
fppp(fp," poly = poly1 mod universalNumber where char=0 and \n"); |
fppp(fp," poly and poly2 belong to a same ring.\n"); |
fppp(fp," poly and poly2 belong to a same ring.\n"); |
Line 232 void Kusage2(fp,s) |
|
Line 233 void Kusage2(fp,s) |
|
}else if (strcmp(s,"homogenize") == 0) { |
}else if (strcmp(s,"homogenize") == 0) { |
fppp(fp,"<< f homogenize g >>\n"); |
fppp(fp,"<< f homogenize g >>\n"); |
fppp(fp,"poly f,g;\n"); |
fppp(fp,"poly f,g;\n"); |
fppp(fp,"array of poly f,g;\n"); |
fppp(fp,"array of poly f,g;\n\n"); |
|
fppp(fp,"[(degreeShift) (value)] homogenize [shiftD shiftUV]\n"); |
|
fppp(fp,"[(degreeShift) (reset)] homogenize [null null]\n"); |
|
fppp(fp,"[(degreeShift) shiftD ] homogenize [shiftD shiftUV]\n"); |
|
fppp(fp,"[(degreeShift) [shiftD shiftUV]] homogenize [shiftD shiftUV]\n"); |
|
fppp(fp,"[(degreeShift) [ ] fv] homogenize hfv\n"); |
|
fppp(fp,"[(degreeShift) shiftD fv] homogenize hfv\n"); |
|
fppp(fp,"[(degreeShift) [shiftD shiftUV] fv] homogenize hfv\n"); |
|
fppp(fp,"shiftD : degree shift vector for (0,1)-h homogenization\n"); |
|
fppp(fp,"shiftUV : degree shift vector for (-1,1)-s homogenization (internal for ecart.)\n"); |
|
fppp(fp,"fv : polynomial or vector of polynomials.\n"); |
|
fppp(fp,"Example: [(x) ring_of_differential_operators 0] define_ring\n"); |
|
fppp(fp," [(degreeShift) [[1 0] [0 1]] [(x+1). (Dx+1).]] homogenize ::\n"); |
|
fppp(fp," [(degreeShift) (value)] homogenize ::\n"); |
|
fppp(fp,"Note. min of ord (-1,1)[0,1] is min {-1,1, 1+1,1+0} = -1 =m \n"); |
|
fppp(fp," Degree of H is b-a+v(i)-m where v=[0,1]\n"); |
|
fppp(fp,"Side effects: It changes h-degree shift vector and s-degree shift vector\n"); |
|
fppp(fp," in homogenizeObject_go(), which is called from ecart division codes\n"); |
|
fppp(fp," as well as the function homogenize.\n"); |
|
fppp(fp,"DegreeShift is automatically reset when set_up_ring is called.\n"); |
}else if (strcmp(s,"idiv") == 0) { |
}else if (strcmp(s,"idiv") == 0) { |
fppp(fp,"<< a b idiv a/b >>\n"); |
fppp(fp,"<< a b idiv a/b >>\n"); |
fppp(fp,"int a,b,a/b;\n"); |
fppp(fp,"int a,b,a/b;\n"); |
Line 257 void Kusage2(fp,s) |
|
Line 277 void Kusage2(fp,s) |
|
fppp(fp,"Example: (x+1). [0 1 1 1] init :: cf. weightv \n\n"); |
fppp(fp,"Example: (x+1). [0 1 1 1] init :: cf. weightv \n\n"); |
fppp(fp,"<< fv weight_vector init h >>\n"); |
fppp(fp,"<< fv weight_vector init h >>\n"); |
fppp(fp,"<< fv [weight_vector shift_vector] init h >>\n"); |
fppp(fp,"<< fv [weight_vector shift_vector] init h >>\n"); |
|
fppp(fp,"<< fv init h >> or << hv [ ] init h >>\n"); |
fppp(fp,"fv is a polynomial or a vector of polynomials.\n"); |
fppp(fp,"fv is a polynomial or a vector of polynomials.\n"); |
|
fppp(fp,"h is the initial term with respect to the weight vector and the shift vector\n"); |
|
fppp(fp,"if they are given.\n"); |
fppp(fp,"Note: the last x variable is always assumed to be the vector index.\n"); |
fppp(fp,"Note: the last x variable is always assumed to be the vector index.\n"); |
fppp(fp,"Example: [(x,y) ring_of_differential_operators 0] define_ring\n"); |
fppp(fp,"Example: [(x,y) ring_of_differential_operators 0] define_ring\n"); |
fppp(fp," [(x^2*Dx^2+2*x*Dx+x). (Dx+x).] [[(Dx) 1 (x) -1] weightv [0 -1]] init ::\n"); |
fppp(fp," [(x^2*Dx^2+2*x*Dx+x). (Dx+x).] [[(Dx) 1 (x) -1] weightv [0 -1]] init ::\n"); |