version 1.1, 1999/10/08 02:12:02 |
version 1.9, 2003/08/21 12:28:58 |
|
|
|
/* $OpenXM: OpenXM/src/kan96xx/Kan/poly4.c,v 1.8 2003/08/19 08:02:10 takayama Exp $ */ |
#include <stdio.h> |
#include <stdio.h> |
#include "datatype.h" |
#include "datatype.h" |
#include "stackm.h" |
#include "stackm.h" |
Line 10 static int degreeOfInitW(POLY f,int w[]); |
|
Line 11 static int degreeOfInitW(POLY f,int w[]); |
|
|
|
|
|
static void shell(v,n) |
static void shell(v,n) |
int v[]; |
int v[]; |
int n; |
int n; |
{ |
{ |
int gap,i,j,temp; |
int gap,i,j,temp; |
|
|
for (gap = n/2; gap > 0; gap /= 2) { |
for (gap = n/2; gap > 0; gap /= 2) { |
for (i = gap; i<n; i++) { |
for (i = gap; i<n; i++) { |
for (j=i-gap ; j>=0 && v[j]<v[j+gap]; j -= gap) { |
for (j=i-gap ; j>=0 && v[j]<v[j+gap]; j -= gap) { |
temp = v[j]; |
temp = v[j]; |
v[j] = v[j+gap]; |
v[j] = v[j+gap]; |
v[j+gap] = temp; |
v[j+gap] = temp; |
} |
} |
} |
} |
} |
} |
|
|
|
|
|
|
struct matrixOfPOLY *parts(f,v) |
struct matrixOfPOLY *parts(f,v) |
POLY f; |
POLY f; |
POLY v; /* v must be a single variable, e.g. x */ |
POLY v; /* v must be a single variable, e.g. x */ |
{ |
{ |
struct matrixOfPOLY *evPoly; |
struct matrixOfPOLY *evPoly; |
int vi = 0; /* index of v */ |
int vi = 0; /* index of v */ |
Line 95 POLY v; /* v must be a single variable, e.g. x */ |
|
Line 96 POLY v; /* v must be a single variable, e.g. x */ |
|
ft = f; |
ft = f; |
while (ft != POLYNULL) { |
while (ft != POLYNULL) { |
if (vx) { |
if (vx) { |
if (ft->m->e[vi].x == ev[i]) { |
if (ft->m->e[vi].x == ev[i]) { |
h = newCell(ft->coeffp,monomialCopy(ft->m)); |
h = newCell(ft->coeffp,monomialCopy(ft->m)); |
xset0(h,vi); /* touch monomial part, so you need to copy it above. */ |
xset0(h,vi); /* touch monomial part, so you need to copy it above. */ |
ans = ppAdd(ans,h); |
ans = ppAdd(ans,h); |
} |
} |
}else{ |
}else{ |
if (ft->m->e[vi].D == ev[i]) { |
if (ft->m->e[vi].D == ev[i]) { |
h = newCell(ft->coeffp,monomialCopy(ft->m)); |
h = newCell(ft->coeffp,monomialCopy(ft->m)); |
dset0(h,vi); |
dset0(h,vi); |
ans = ppAdd(ans,h); |
ans = ppAdd(ans,h); |
} |
} |
} |
} |
ft = ft->next; |
ft = ft->next; |
} |
} |
Line 113 POLY v; /* v must be a single variable, e.g. x */ |
|
Line 114 POLY v; /* v must be a single variable, e.g. x */ |
|
} |
} |
return(evPoly); |
return(evPoly); |
} |
} |
|
|
struct object parts2(f,v) |
struct object parts2(f,v) |
POLY f; |
POLY f; |
POLY v; /* v must be a single variable, e.g. x */ |
POLY v; /* v must be a single variable, e.g. x */ |
{ |
{ |
struct matrixOfPOLY *evPoly; |
struct matrixOfPOLY *evPoly; |
int vi = 0; /* index of v */ |
int vi = 0; /* index of v */ |
Line 189 POLY v; /* v must be a single variable, e.g. x */ |
|
Line 190 POLY v; /* v must be a single variable, e.g. x */ |
|
ft = f; |
ft = f; |
while (ft != POLYNULL) { |
while (ft != POLYNULL) { |
if (vx) { |
if (vx) { |
if (ft->m->e[vi].x == ev[i]) { |
if (ft->m->e[vi].x == ev[i]) { |
h = newCell(ft->coeffp,monomialCopy(ft->m)); |
h = newCell(ft->coeffp,monomialCopy(ft->m)); |
xset0(h,vi); /* touch monomial part, so you need to copy it above. */ |
xset0(h,vi); /* touch monomial part, so you need to copy it above. */ |
ans = ppAdd(ans,h); |
ans = ppAdd(ans,h); |
} |
} |
}else{ |
}else{ |
if (ft->m->e[vi].D == ev[i]) { |
if (ft->m->e[vi].D == ev[i]) { |
h = newCell(ft->coeffp,monomialCopy(ft->m)); |
h = newCell(ft->coeffp,monomialCopy(ft->m)); |
dset0(h,vi); |
dset0(h,vi); |
ans = ppAdd(ans,h); |
ans = ppAdd(ans,h); |
} |
} |
} |
} |
ft = ft->next; |
ft = ft->next; |
} |
} |
Line 215 POLY v; /* v must be a single variable, e.g. x */ |
|
Line 216 POLY v; /* v must be a single variable, e.g. x */ |
|
putoa(rob,0,ob1); putoa(rob,1,ob2); |
putoa(rob,0,ob1); putoa(rob,1,ob2); |
return(rob); |
return(rob); |
} |
} |
|
|
int pDegreeWrtV(f,v) |
int pDegreeWrtV(f,v) |
POLY f; |
POLY f; |
POLY v; |
POLY v; |
{ |
{ |
int vx = 1; |
int vx = 1; |
int vi = 0; |
int vi = 0; |
Line 298 int containVectorVariable(POLY f) |
|
Line 299 int containVectorVariable(POLY f) |
|
} |
} |
|
|
POLY homogenize(f) |
POLY homogenize(f) |
POLY f; |
POLY f; |
/* homogenize by using (*grade)(f) */ |
/* homogenize by using (*grade)(f) */ |
{ |
{ |
POLY t; |
POLY t; |
int maxg; |
int maxg; |
|
|
} |
} |
|
|
int isHomogenized(f) |
int isHomogenized(f) |
POLY f; |
POLY f; |
{ |
{ |
POLY t; |
POLY t; |
extern int Homogenize_vec; |
extern int Homogenize_vec; |
int maxg; |
int maxg; |
if (!Homogenize_vec) return(isHomogenized_vec(f)); |
if (!Homogenize_vec) return(isHomogenized_vec(f)); |
if (f == ZERO) return(1); |
if (f == ZERO) return(1); |
|
if (f->m->ringp->weightedHomogenization) { |
|
return 1; /* BUG: do not chech in case of one-zero homogenization */ |
|
} |
maxg = (*grade)(f); |
maxg = (*grade)(f); |
t = f; |
t = f; |
while (t != POLYNULL) { |
while (t != POLYNULL) { |
|
|
} |
} |
|
|
int isHomogenized_vec(f) |
int isHomogenized_vec(f) |
POLY f; |
POLY f; |
{ |
{ |
/* This is not efficient version. *grade should be grade_module1v(). */ |
/* This is not efficient version. *grade should be grade_module1v(). */ |
POLY t; |
POLY t; |
int ggg; |
int ggg; |
if (f == ZERO) return(1); |
if (f == ZERO) return(1); |
|
if (f->m->ringp->weightedHomogenization) { |
|
return 1; /* BUG: do not chech in case of one-zero homogenization */ |
|
} |
while (f != POLYNULL) { |
while (f != POLYNULL) { |
t = f; |
t = f; |
ggg = (*grade)(f); |
ggg = (*grade)(f); |
while (t != POLYNULL) { |
while (t != POLYNULL) { |
if ((*isSameComponent)(f,t)) { |
if ((*isSameComponent)(f,t)) { |
if (ggg != (*grade)(t)) return(0); |
if (ggg != (*grade)(t)) return(0); |
} |
} |
t = t->next; |
t = t->next; |
} |
} |
|
|
|
|
|
|
static int degreeOfPrincipalPart(f) |
static int degreeOfPrincipalPart(f) |
POLY f; |
POLY f; |
{ |
{ |
int n,i,dd; |
int n,i,dd; |
if (f ISZERO) return(0); |
if (f ISZERO) return(0); |
|
|
} |
} |
|
|
POLY POLYToPrincipalPart(f) |
POLY POLYToPrincipalPart(f) |
POLY f; |
POLY f; |
{ |
{ |
POLY node; |
POLY node; |
struct listPoly nod; |
struct listPoly nod; |
|
|
} |
} |
|
|
static int degreeOfInitW(f,w) |
static int degreeOfInitW(f,w) |
POLY f; |
POLY f; |
int w[]; |
int w[]; |
{ |
{ |
int n,i,dd; |
int n,i,dd; |
if (f ISZERO) { |
if (f ISZERO) { |
|
|
} |
} |
|
|
POLY POLYToInitW(f,w) |
POLY POLYToInitW(f,w) |
POLY f; |
POLY f; |
int w[]; /* weight vector */ |
int w[]; /* weight vector */ |
{ |
{ |
POLY node; |
POLY node; |
struct listPoly nod; |
struct listPoly nod; |
Line 492 int isTheSameRing(struct ring *rstack[],int rp, struct |
|
Line 499 int isTheSameRing(struct ring *rstack[],int rp, struct |
|
if (rrr->orderMatrixSize != newRingp->orderMatrixSize) { a=12; goto bbb ; } |
if (rrr->orderMatrixSize != newRingp->orderMatrixSize) { a=12; goto bbb ; } |
for (i=0; i<rrr->orderMatrixSize; i++) { |
for (i=0; i<rrr->orderMatrixSize; i++) { |
for (j=0; j<2*(rrr->n); j++) { |
for (j=0; j<2*(rrr->n); j++) { |
if (rrr->order[i*2*(rrr->n)+j] != newRingp->order[i*2*(rrr->n)+j]) |
if (rrr->order[i*2*(rrr->n)+j] != newRingp->order[i*2*(rrr->n)+j]) |
{ a=13; goto bbb ; } |
{ a=13; goto bbb ; } |
} |
} |
} |
} |
if (rrr->next != newRingp->next) { a=14; goto bbb ; } |
if (rrr->next != newRingp->next) { a=14; goto bbb ; } |
if (rrr->multiplication != newRingp->multiplication) { a=15; goto bbb ; } |
if (rrr->multiplication != newRingp->multiplication) { a=15; goto bbb ; } |
/* if (rrr->schreyer != newRingp->schreyer) { a=16; goto bbb ; }*/ |
/* if (rrr->schreyer != newRingp->schreyer) { a=16; goto bbb ; }*/ |
if (newRingp->schreyer == 1) { a=16; goto bbb; } |
if (newRingp->schreyer == 1) { a=16; goto bbb; } |
|
if (rrr->weightedHomogenization != newRingp->weightedHomogenization) { a=16; goto bbb; } |
|
if (rrr->degreeShiftSize != newRingp->degreeShiftSize) { |
|
a = 17; goto bbb; |
|
} |
|
if (rrr->degreeShiftN != newRingp->degreeShiftN) { |
|
a = 17; goto bbb; |
|
} |
|
for (i=0; i < rrr->degreeShiftSize; i++) { |
|
for (j=0; j< rrr->degreeShiftN; j++) { |
|
if (rrr->degreeShift[i*(rrr->degreeShiftN)+j] != |
|
newRingp->degreeShift[i*(rrr->degreeShiftN)+j]) { |
|
a = 17; goto bbb; |
|
} |
|
} |
|
} |
|
|
/* The following fields are ignored. |
/* The following fields are ignored. |
void *gbListTower; |
void *gbListTower; |
int *outputOrder; |
int *outputOrder; |
Line 513 int isTheSameRing(struct ring *rstack[],int rp, struct |
|
Line 536 int isTheSameRing(struct ring *rstack[],int rp, struct |
|
} |
} |
return(-1); |
return(-1); |
} |
} |
|
|
|
/* s->1 */ |
|
POLY goDeHomogenizeS(POLY f) { |
|
POLY lRule[1]; |
|
POLY rRule[1]; |
|
struct ring *rp; |
|
POLY ans; |
|
/* printf("1:[%s]\n",POLYToString(f,'*',1)); */ |
|
if (f == POLYNULL) return f; |
|
rp = f->m->ringp; |
|
if (rp->next == NULL) { |
|
lRule[0] = cxx(1,0,1,rp); |
|
rRule[0] = cxx(1,0,0,rp); |
|
ans=replace(f,lRule,rRule,1); |
|
}else{ |
|
struct coeff *cp; |
|
POLY t; |
|
POLY nc; |
|
ans = POLYNULL; |
|
while (f != POLYNULL) { |
|
cp = f->coeffp; |
|
if (cp->tag == POLY_COEFF) { |
|
t = goDeHomogenizeS((cp->val).f); |
|
nc = newCell(polyToCoeff(t,f->m->ringp),f->m); |
|
ans = ppAddv(ans,nc); |
|
f = f->next; |
|
}else{ |
|
ans = f; break; |
|
} |
|
} |
|
} |
|
/* printf("2:[%s]\n",POLYToString(ans,'*',1)); */ |
|
return ans; |
|
} |
|
|
|
POLY goDeHomogenizeS_buggy(POLY f) { |
|
POLY node; |
|
POLY lastf; |
|
struct listPoly nod; |
|
POLY h; |
|
POLY tf; |
|
int gt,first; |
|
|
|
printf("1:[%s]\n",POLYToString(f,'*',1)); |
|
if (f == POLYNULL) return(POLYNULL); |
|
node = &nod; |
|
node->next = POLYNULL; |
|
lastf = POLYNULL; |
|
first = 1; |
|
while (f != POLYNULL) { |
|
tf = newCell(f->coeffp,monomialCopy(f->m)); |
|
tf->m->e[0].x = 0; /* H, s variable in the G-O paper. */ |
|
if (first) { |
|
node->next = tf; |
|
lastf = tf; |
|
first = 0; |
|
}else{ |
|
gt = (*mmLarger)(lastf,tf); |
|
if (gt == 1) { |
|
lastf->next = tf; |
|
lastf = tf; |
|
}else{ |
|
h = node->next; |
|
h = ppAddv(h,tf); |
|
node->next = h; |
|
lastf = h; |
|
while (lastf->next != POLYNULL) { |
|
lastf = lastf->next; |
|
} |
|
} |
|
} |
|
f = f->next; |
|
} |
|
printf("2:[%s]\n",POLYToString(node->next,'*',1)); |
|
return (node->next); |
|
} |
|
|
|
/* Granger-Oaku's homogenization for the ecart tangent cone. |
|
Note: 2003.07.10. |
|
ds[] is the degree shift. |
|
ei ( element index ). If it is < 0, then e[n-1]->x will be used, |
|
else ei is used. |
|
if onlyS is set to 1, then input is assumed to be (u,v)-h-homogeneous. |
|
*/ |
|
POLY goHomogenize(POLY f,int u[],int v[],int ds[],int dssize,int ei,int onlyS) |
|
{ |
|
POLY node; |
|
POLY lastf; |
|
struct listPoly nod; |
|
POLY h; |
|
POLY tf; |
|
int gt,first,m,mp,t,tp,dsIdx,message; |
|
struct ring *rp; |
|
|
|
message = 1; |
|
if (f == POLYNULL) return(POLYNULL); |
|
rp = f->m->ringp; |
|
if ((rp->degreeShiftSize == 0) && (dssize > 0)) { |
|
warningPoly("You are trying to homogenize a polynomial with degree shift. However, the polynomial belongs to the ring without degreeShift option. It may cause a trouble in comparison in free module.\n"); |
|
} |
|
node = &nod; |
|
node->next = POLYNULL; |
|
lastf = POLYNULL; |
|
first = 1; |
|
while (f != POLYNULL) { |
|
if (first) { |
|
t = m = dGrade1(f); |
|
tp = mp = uvGrade1(f,u,v,ds,dssize,ei); |
|
}else{ |
|
t = dGrade1(f); |
|
tp = uvGrade1(f,u,v,ds,dssize,ei); |
|
if (t > m) m = t; |
|
if (tp < mp) mp = tp; |
|
} |
|
|
|
tf = newCell(f->coeffp,monomialCopy(f->m)); |
|
/* Automatic dehomogenize. Not += */ |
|
if (message && ((tf->m->e[0].D != 0) || (tf->m->e[0].x != 0))) { |
|
/*go-debug fprintf(stderr,"Automatic dehomogenize and homogenize.\n"); */ |
|
message = 0; |
|
} |
|
if (!onlyS) { |
|
tf->m->e[0].D = -t; /* h */ |
|
} |
|
tf->m->e[0].x = tp; /* H, s variable in the G-O paper. */ |
|
/*go-debug printf("t(h)=%d, tp(uv+ds)=%d\n",t,tp); */ |
|
if (first) { |
|
node->next = tf; |
|
lastf = tf; |
|
first = 0; |
|
}else{ |
|
gt = (*mmLarger)(lastf,tf); |
|
if (gt == 1) { |
|
lastf->next = tf; |
|
lastf = tf; |
|
}else{ |
|
/*go-debug printf("?\n"); */ |
|
h = node->next; |
|
h = ppAddv(h,tf); |
|
node->next = h; |
|
lastf = h; |
|
while (lastf->next != POLYNULL) { |
|
lastf = lastf->next; |
|
} |
|
} |
|
} |
|
f = f->next; |
|
} |
|
h = node->next; |
|
/*go-debug printf("m=%d, mp=%d\n",m,mp); */ |
|
while (h != POLYNULL) { |
|
/*go-debug printf("Old: h=%d, s=%d\n",h->m->e[0].D,h->m->e[0].x); */ |
|
if (!onlyS) h->m->e[0].D += m; /* h */ |
|
h->m->e[0].x += -mp; /* H, s*/ |
|
/*go-debug printf("New: h=%d, s=%d\n",h->m->e[0].D,h->m->e[0].x); */ |
|
h = h->next; |
|
} |
|
return (node->next); |
|
} |
|
|
|
/* u[] = -1, v[] = 1 */ |
|
POLY goHomogenize11(POLY f,int ds[],int dssize,int ei,int onlyS) |
|
{ |
|
int r; |
|
int i,t,n,m,nn; |
|
MONOMIAL tf; |
|
static int *u; |
|
static int *v; |
|
static struct ring *cr = (struct ring *)NULL; |
|
|
|
if (f == POLYNULL) return POLYNULL; |
|
|
|
tf = f->m; |
|
if (tf->ringp != cr) { |
|
n = tf->ringp->n; |
|
m = tf->ringp->m; |
|
nn = tf->ringp->nn; |
|
cr = tf->ringp; |
|
u = (int *)sGC_malloc(sizeof(int)*n); |
|
v = (int *)sGC_malloc(sizeof(int)*n); |
|
for (i=0; i<n; i++) u[i]=v[i]=0; |
|
for (i=m; i<nn; i++) { |
|
u[i] = -1; v[i] = 1; |
|
} |
|
} |
|
return(goHomogenize(f,u,v,ds,dssize,ei,onlyS)); |
|
} |
|
|
|
POLY goHomogenize_dsIdx(POLY f,int u[],int v[],int dsIdx,int ei,int onlyS) |
|
{ |
|
if (f == POLYNULL) return POLYNULL; |
|
} |
|
POLY goHomogenize11_dsIdx(POLY f,int ds[],int dsIdx,int ei,int onlyS) |
|
{ |
|
if (f == POLYNULL) return POLYNULL; |
|
} |
|
|
|
/* cf. KsetUpRing() in kanExport0.c */ |
|
struct ring *newRingOverFp(struct ring *rp,int p) { |
|
struct ring *newRingp; |
|
char *ringName = NULL; |
|
char pstr[64]; |
|
sprintf(pstr,"_%d",p); |
|
ringName = (char *)sGC_malloc(128); |
|
newRingp = (struct ring *)sGC_malloc(sizeof(struct ring)); |
|
if (newRingp == NULL) errorPoly("No more memory.\n"); |
|
strcpy(ringName,rp->name); |
|
strcat(ringName,pstr); |
|
*newRingp = *rp; |
|
newRingp->p = p; |
|
newRingp->name = ringName; |
|
return newRingp; |
|
} |
|
|
|
/* |
|
P = 3001; |
|
L = [ ]; |
|
while (P<10000) { |
|
L=cons(P,L); |
|
P = pari(nextprime,P+1); |
|
} |
|
print(L); |
|
*/ |
|
#define N799 799 |
|
static int nextPrime(void) { |
|
static int pt = 0; |
|
static int tb[N799] = |
|
{3001,3011,3019,3023,3037,3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,3169,3181,3187,3191,3203,3209,3217,3221,3229,3251,3253,3257,3259,3271,3299,3301,3307,3313,3319,3323,3329,3331,3343,3347,3359,3361,3371,3373,3389,3391,3407,3413,3433,3449,3457,3461,3463,3467,3469,3491,3499,3511,3517,3527,3529,3533,3539,3541,3547,3557,3559,3571,3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,3659,3671,3673,3677,3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,3779,3793,3797,3803,3821,3823,3833,3847,3851,3853,3863,3877,3881,3889,3907,3911,3917,3919,3923,3929,3931,3943,3947,3967,3989, |
|
4001,4003,4007,4013,4019,4021,4027,4049,4051,4057,4073,4079,4091,4093,4099,4111,4127,4129,4133,4139,4153,4157,4159,4177,4201,4211,4217,4219,4229,4231,4241,4243,4253,4259,4261,4271,4273,4283,4289,4297,4327,4337,4339,4349,4357,4363,4373,4391,4397,4409,4421,4423,4441,4447,4451,4457,4463,4481,4483,4493,4507,4513,4517,4519,4523,4547,4549,4561,4567,4583,4591,4597,4603,4621,4637,4639,4643,4649,4651,4657,4663,4673,4679,4691,4703,4721,4723,4729,4733,4751,4759,4783,4787,4789,4793,4799,4801,4813,4817,4831,4861,4871,4877,4889,4903,4909,4919,4931,4933,4937,4943,4951,4957,4967,4969,4973,4987,4993,4999, |
|
5003,5009,5011,5021,5023,5039,5051,5059,5077,5081,5087,5099,5101,5107,5113,5119,5147,5153,5167,5171,5179,5189,5197,5209,5227,5231,5233,5237,5261,5273,5279,5281,5297,5303,5309,5323,5333,5347,5351,5381,5387,5393,5399,5407,5413,5417,5419,5431,5437,5441,5443,5449,5471,5477,5479,5483,5501,5503,5507,5519,5521,5527,5531,5557,5563,5569,5573,5581,5591,5623,5639,5641,5647,5651,5653,5657,5659,5669,5683,5689,5693,5701,5711,5717,5737,5741,5743,5749,5779,5783,5791,5801,5807,5813,5821,5827,5839,5843,5849,5851,5857,5861,5867,5869,5879,5881,5897,5903,5923,5927,5939,5953,5981,5987, |
|
6007,6011,6029,6037,6043,6047,6053,6067,6073,6079,6089,6091,6101,6113,6121,6131,6133,6143,6151,6163,6173,6197,6199,6203,6211,6217,6221,6229,6247,6257,6263,6269,6271,6277,6287,6299,6301,6311,6317,6323,6329,6337,6343,6353,6359,6361,6367,6373,6379,6389,6397,6421,6427,6449,6451,6469,6473,6481,6491,6521,6529,6547,6551,6553,6563,6569,6571,6577,6581,6599,6607,6619,6637,6653,6659,6661,6673,6679,6689,6691,6701,6703,6709,6719,6733,6737,6761,6763,6779,6781,6791,6793,6803,6823,6827,6829,6833,6841,6857,6863,6869,6871,6883,6899,6907,6911,6917,6947,6949,6959,6961,6967,6971,6977,6983,6991,6997, |
|
7001,7013,7019,7027,7039,7043,7057,7069,7079,7103,7109,7121,7127,7129,7151,7159,7177,7187,7193,7207,7211,7213,7219,7229,7237,7243,7247,7253,7283,7297,7307,7309,7321,7331,7333,7349,7351,7369,7393,7411,7417,7433,7451,7457,7459,7477,7481,7487,7489,7499,7507,7517,7523,7529,7537,7541,7547,7549,7559,7561,7573,7577,7583,7589,7591,7603,7607,7621,7639,7643,7649,7669,7673,7681,7687,7691,7699,7703,7717,7723,7727,7741,7753,7757,7759,7789,7793,7817,7823,7829,7841,7853,7867,7873,7877,7879,7883,7901,7907,7919,7927,7933,7937,7949,7951,7963,7993, |
|
8009,8011,8017,8039,8053,8059,8069,8081,8087,8089,8093,8101,8111,8117,8123,8147,8161,8167,8171,8179,8191,8209,8219,8221,8231,8233,8237,8243,8263,8269,8273,8287,8291,8293,8297,8311,8317,8329,8353,8363,8369,8377,8387,8389,8419,8423,8429,8431,8443,8447,8461,8467,8501,8513,8521,8527,8537,8539,8543,8563,8573,8581,8597,8599,8609,8623,8627,8629,8641,8647,8663,8669,8677,8681,8689,8693,8699,8707,8713,8719,8731,8737,8741,8747,8753,8761,8779,8783,8803,8807,8819,8821,8831,8837,8839,8849,8861,8863,8867,8887,8893,8923,8929,8933,8941,8951,8963,8969,8971,8999, |
|
9001,9007,9011,9013,9029,9041,9043,9049,9059,9067,9091,9103,9109,9127,9133,9137,9151,9157,9161,9173,9181,9187,9199,9203,9209,9221,9227,9239,9241,9257,9277,9281,9283,9293,9311,9319,9323,9337,9341,9343,9349,9371,9377,9391,9397,9403,9413,9419,9421,9431,9433,9437,9439,9461,9463,9467,9473,9479,9491,9497,9511,9521,9533,9539,9547,9551,9587,9601,9613,9619,9623,9629,9631,9643,9649,9661,9677,9679,9689,9697,9719,9721,9733,9739,9743,9749,9767,9769,9781,9787,9791,9803,9811,9817,9829,9833,9839,9851,9857,9859,9871,9883,9887,9901,9907,9923,9929,9931,9941,9949,9967,9973}; |
|
|
|
if (pt <N799) { |
|
return tb[pt++]; |
|
}else{ |
|
pt = 0; |
|
return tb[pt++]; |
|
} |
|
} |
|
|
|
int getPrime(int p) { |
|
int i; |
|
if (p <= 2) return nextPrime(); |
|
for (i=2; i<p; i++) { |
|
if (p % i == 0) { |
|
return nextPrime(); |
|
} |
|
} |
|
return p; |
|
} |